1-20 of 260 Search Results for

radial friction welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001382
EISBN: 978-1-62708-173-3
... Abstract This article provides information on radial friction welding, which adopts the principle of rotating and compressing a solid ring around two stationary pipe. The process evolution of this welding is illustrated. The article also examines the equipment used and operating steps. It also...
Image
Published: 01 January 1993
Fig. 1 Radial friction welding. (a) Using compression. (b) Using expansion More
Image
Published: 01 January 1993
Fig. 2 Process evolution of radial friction welding More
Image
Published: 01 January 1993
Fig. 3 Radial friction-welding machine with a 51 mm (2 in.) diameter More
Image
Published: 01 January 1993
Fig. 4 Schematic of the prototype radial friction-welding machine More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001447
EISBN: 978-1-62708-173-3
... the faying surfaces, thereby creating a weld. Process variations include inertia, direct-drive, linear, and orbital radial friction welding, as well as friction surfacing. (Additional information is available in the articles “Fundamentals of Friction Welding,” , “Friction Welding,” , “Radial Friction...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005596
EISBN: 978-1-62708-174-0
... variations include inertia, direct-drive, linear, and radial friction welding, as well as friction surfacing. This article provides information about practice considerations for the two most common variations: inertia and direct-drive friction welding. Inertia welding obtains the heat needed for welding...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005578
EISBN: 978-1-62708-174-0
... between the two components, including radial, orbital, angular reciprocating, linear reciprocating, or rotary. Two important variations of friction welding are friction surfacing and friction stir welding. These processes are sufficiently different from other traditional friction welding variants...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005515
EISBN: 978-1-62708-197-9
... to simulating the welding process. Friction has been treated in modeling strategies in a number of ways. Early work involved the assumption that the friction coefficient, μ fr , is either constant or varies radially ( Ref 8 , 39 ). However, it is typically sensitive to pressure, P , temperature, T...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001383
EISBN: 978-1-62708-173-3
... of the friction surface process. friction surfacing welding equipment FRICTION WELDING, a solid-state (non-melting) joining process, relies on the presence of relative motion between the parts while they are being pressed together under an applied axial force to generate the thermomechanical...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... welding processes), or high-energy-density beams (radiant energy or beam welding processes). For solid-phase, nonfusion welding, mechanical energy sources predominate, including the use of pressure, friction, and solid-state diffusion, although the energy of chemical reactions can also be used...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001349
EISBN: 978-1-62708-173-3
... Abstract Friction welding (FRW) is a solid-state welding process in which the heat for welding is produced by the relative motion of the two interfaces being joined. This article describes two principal FRW methods: direct-drive welding and inertia-drive welding. The direct-drive FRW uses...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005575
EISBN: 978-1-62708-174-0
... Abstract Friction welding (FRW) is a solid-state welding process in which the heat for welding is produced by the relative motion of the two interfaces being joined. This article provides an outline of the mechanisms of friction heating and discusses the two principal FRW methods: direct-drive...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003209
EISBN: 978-1-62708-199-3
..., there is no evidence in the finished weld because the metal is worked during the welding stage. There are two methods of joining workpieces by FRW: continuous-drive FRW and inertia-drive FRW. More recently, radial friction machines have been introduced for joining hollow sections (pipe and tube). Process...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006385
EISBN: 978-1-62708-192-4
... of extrusion as well as thermodynamics. The finite-element method suitable for simulation of metal forming processes is explained. The article examines the extrusion defects that are divided into three different categories including surface, subsurface, and internal type. It includes information on friction...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006426
EISBN: 978-1-62708-192-4
... low friction characteristics compared to plain bearings or simple sliding bearings (usually 1 to 2 orders of magnitude less). Fig. 1 Radial rolling-element bearings. (a) Cutaway view of radial ball bearing showing inner ring, outer ring, balls, and cage assembly. (b) Tapered roller bearing...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006534
EISBN: 978-1-62708-207-5
... in the cooler peripheral regions of the billet is significantly higher than that in the center. Source: Ref 6 In Fig. 10(b) , there is negligible friction between the container and the billet, but significant friction occurs at the surface of the die and its holder. This restricts radial flow...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005637
EISBN: 978-1-62708-174-0
... Abstract Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006089
EISBN: 978-1-62708-175-7
.... 1 ) occurs in the direction of least resistance to particle flow. The greater the curvature of the balls, the greater the radial wedge effect acting on the trapped particles and the higher the velocity of ejection. Radial displacement of powder is resisted by interparticle friction and friction...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002187
EISBN: 978-1-62708-188-7
... cooling characteristics. Cutting fluids are important for surface quality, accuracy, chip formation, tool life, and prevention of burr formation and built-up edge (or tool-workpiece welding). Built-Up Edges Built-up edges lead to deterioration in finish and accuracy. In severe cases, flute loading...