Skip Nav Destination
Close Modal
By
G.E. Totten, M. Narazaki, R.R. Blackwood, L.M. Jarvis
By
William E. Dowling, Jr., Nagendra Palle
By
R. Schneider, R. Mesquita, H. Altena, T. Müller, P. Seemann
By
Timothy Kennamer
By
Nikolai I. Kobasko, Michael A. Aronov, Joseph A. Powell
By
Ronald R. Akers
By
Francisco Andrés Acosta-González
By
D. Scott MacKenzie
By
Rob Goldstein, William Stuehr, Micah Black
By
Satyam S. Sahay, Ujjal Tewary, Goutam Mohapatra
By
Weimin Gao, Lingxue Kong, Peter Hodgson
By
Valery Rudnev, George E. Totten, Yulia Pleshivtseva, Lauralice C.F. Canale, Rosa L. Simencio Otero
By
Arthur Reardon
Search Results for
quench-process design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1131
Search Results for quench-process design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Failures Related to Heat Treating Operations
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Book Chapter
Design for Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002489
EISBN: 978-1-62708-194-8
...), dimensional changes (with respect to size and shape), and, in an extreme situation, component cracking, often referred to as quench cracking. These factors (residual stresses and dimensional changes) have the greatest influence on the design process of a component. Often, the inability to produce components...
Abstract
This article presents an overview of the techniques used in the design for heat treatment and discusses the primary criteria for design: minimization of distortion and undesirable residual stresses. It provides theoretical and empirical guidelines to understand the sources of common heat treat defects. A simple example is presented to demonstrate how thermal and phase-transformation-induced strains cause dimensional changes and residual stresses. The article concludes with a discussion on the heat treatment process modeling technology.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005862
EISBN: 978-1-62708-167-2
... of hardening (martensite formation) for a given cooling rate at the surface during quenching ( Ref 2 ). Hardenability is a key factor in selecting steels for heat treatment. It depends on alloying and the grain size of austenite prior to quenching. Quench process design also depends on the mechanical...
Abstract
Induction heating for hardening of steels has advantages from the standpoint of quenching because parts are individually processed in a controlled manner. This article provides information on the effect of agitation, temperature, hardening, residual stresses, and quenching media, on quenching. It also describes various quenching methods for steel induction heat treating, namely, spray quenching, immersion quenching, self or mass quenching, and forced air quenching. The article also reviews quench system design and quenchants and their maintenance.
Book Chapter
Processes and Furnace Equipment for Heat Treating of Tool Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005958
EISBN: 978-1-62708-168-9
... process. Furthermore, quality standards such as AMS 2750d or North American Die Casting Association (NADCA), which describe temperature homogeneity or quenching speeds and resulting and needed workpiece properties, had a significant effect on furnace design and process control. For over 60 years...
Abstract
This article provides a detailed discussion on the heating equipment used for austenitizing, quenching, and tempering tool steels. These include salt bath furnaces, controlled atmosphere furnaces, fluidized-bed furnaces, and vacuum furnaces. The article discusses the types of nitriding and nitrocarburizing processes and the equipment required for heat treating tool steels to improve hardness, wear resistance, and thermal fatigue. The various nitriding and nitrocarburizing processes covered are salt bath nitrocarburizing, gas nitriding and nitrocarburizing, and plasma nitriding and nitrocarburizing.
Book Chapter
Process Control, Monitoring and Quality Assurance Specifics for Induction Heating
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005852
EISBN: 978-1-62708-167-2
... and design of the coil and quench ring, or internally machined within the coil. Quench delay: Quench delay is an important part of the process. Quench delay is the time from the end of heat to the start of quench, and can actually start before the end of the heat cycle when necessary to compensate...
Abstract
The basic elements of control design are safety, process control, process verification, machine control, productivity, repeatability, and ease of setup. Effective systems of quality control/quality assurance are essential for heat treating practices. This article provides information on process control modes, as well as on process signatures of some items that require control, monitoring, verifying, and logging methods. It provides information on programmable logic controllers that have become efficient in machine control and monitoring. The article describes possible noise issues, National Electric Code clearance requirements, monitoring requirements, and machine accuracy that need to be considered when designing induction equipment.
Book Chapter
Intensive Quenching Processes
Available to PurchaseSeries: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007010
EISBN: 978-1-62708-450-5
... processing using high-velocity water flow IQ units. This article presents a detailed description of IQ technology, related equipment, and IQ applications. A review of intensive quench system design and processing is provided, including numerical design criteria, steel selection, quenchants, properties...
Abstract
Intensive quenching (IQ) is an alternative method of hardening steel parts. Two types of IQ methods are used in heat treating practice: IQ-2 and IQ-3. IQ-2 is implemented in IQ water tanks, which are usually used for batch quenching of steel parts. IQ-3 is conducted in single-part processing using high-velocity water flow IQ units. This article presents a detailed description of IQ technology, related equipment, and IQ applications. A review of intensive quench system design and processing is provided, including numerical design criteria, steel selection, quenchants, properties (especially optimal residual stress profiles). Several specific applications of intensive quenching are also provided.
Book Chapter
Vertical Scanners, Horizontal Scanners, and Tooth by Tooth Scanners
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005847
EISBN: 978-1-62708-167-2
... position. In the case of a moving transformer scanner, the coil is scanned downward to the first heat position, and the coil and quench are scanned upward. In any case, the final stage of the active process is very close to the load/unload position. Moving-Part Vertical Scanner Designs There are two...
Abstract
Scanners are the most versatile and flexible of the equipment available to the heat treating industry for induction hardening. This article provides a general overview of scanners, and describes various critical factors, including scan speeds, rotational speeds, and center total indicator runout of vertical scanners. It presents information on the frequency selection parameters for scanning applications. The article also discusses the critical parameters and production rates in specifying and developing a tooth-by-tooth hardening process.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005809
EISBN: 978-1-62708-165-8
... such as AISI 52100 and A2 tool steel, as well as low-carbon carburizing grades such as AISI 3310, 8620, and 9310. Carburizing steels in particular can benefit from the process of press quenching, due to the nature of their processing and popularity in many of the automotive and gearing assemblies used...
Abstract
Press quenching is a specialized quenching technique that can be utilized during heat treatment to minimize distortion of complex geometrical components by using specialized tooling for generating concentrated forces that constrain the movement of the component in a carefully controlled manner. This article provides a detailed account of the fundamental components of quenching machines, including the upright machine section, control panel, lower die table, tooling, and the base. In addition, it summarizes the critical factors affecting component distortion during press-quenching.
Book Chapter
Advanced Industrial Quench System Design—Fluid Dynamics Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007008
EISBN: 978-1-62708-450-5
... Abstract Computational fluid dynamics (CFD) provides an efficient, alternate, virtual approach for simulating and analyzing quenching processes with an impact on component design, manufacturing process, and quality. This article provides domain insights for quenching researchers and CFD...
Abstract
Computational fluid dynamics (CFD) provides an efficient, alternate, virtual approach for simulating and analyzing quenching processes with an impact on component design, manufacturing process, and quality. This article provides domain insights for quenching researchers and CFD practitioners for the modeling of the industrial quenching process and for supporting the diverse multifunctional needs in an industry, ranging from primary metallurgical companies (steel, aluminum, and other alloys), original equipment manufacturers, engineering companies, captive and commercial heat treating facilities, quench system manufacturers, and quench fluid suppliers. It describes the governing differential equations for the fluid flow and heat-transfer phenomena during quenching. The article also discusses different modeling categories to determine a CFD methodology for quenching.
Book Chapter
Quenchant Agitation, Design, and Characterization
Available to PurchaseSeries: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005923
EISBN: 978-1-62708-166-5
... measurement methods, temperature control, materials handling, and filtration processes during the agitation process. The maintenance of quenching installations is also discussed. agitators computational fluid dynamics fixtures quench tank design quenchants quenching safety precautions MUCH...
Abstract
Quenchant agitation can be obtained by circulating quenchant in a quench tank through pumps and impellers. The selection of the agitation method depends on the tank design, type and volume of the quenchant, part design, and the severity of quench required. This article describes flow measurement methods, temperature control, materials handling, and filtration processes during the agitation process. The maintenance of quenching installations is also discussed.
Book Chapter
Steel Heat Treatment Failures due to Quenching
Available to PurchaseSeries: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007018
EISBN: 978-1-62708-450-5
... cannot be reduced. Fig. 14 Various features of a typical stress-strain curve obtained from a tension test. Source: Ref 12 Fig. 15 Variation of yield strength with temperature for three generic classes of steel. Source: Ref 14 Effect of Materials and Quench Process Design...
Abstract
Quenching is one of the most important heat treating processes, because it is so closely related to dimensional control requirements and control of residual stresses. This article provides an overview of the fundamental material- and process-related parameters of quenching on residual stress, distortion control, and cracking. This overview is followed by various selected case histories of failures attributed to the quenching process.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005820
EISBN: 978-1-62708-165-8
.... In specially designed pressurized batch quench systems, up to 12% water can be added, greatly increasing the quench severity. Fig. 2 Relative maximum quench severity of various quench systems compared on the Grossman scale. Source: Research performed by Applied Process Inc. and AFC Holcroft When...
Abstract
Molten salt, including nitrite/nitrate salts, is the quenching medium most commonly used in austempering and marquenching of ferrous materials. This article describes the use of molten salts in the quenching of ferrous materials. It provides information on the processing and operation of salt quenching including considerations of time, temperature, environment, and safety, as well as critical characteristics such as the composition of the quenchant, agitation, and water additions.
Book Chapter
Design and Fabrication of Inductors for Induction Heat Treating
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005839
EISBN: 978-1-62708-167-2
... the quick-change adapter allows for a variable vertical position. Fig. 25 Styles of quick-change adapters. Courtesy of Capital Induction Quenching Considerations in Induction Coil Design In many cases, quenching is done to finalize the hardening process of steel components, and it typically...
Abstract
This article provides information on single-shot and scanning, the two types of induction heat treating processes that are based on whether the induction coil is moving relative to the part during the heating process. It describes the effect of the frequency of induction heating current on the induction coil and process design, and the control of heating in different areas of the inductor part. The article reviews three main tools for adjustment of coil design and fabrication: coupling gap, coil copper profile, and magnetic flux controllers. It examines the method of holding a part and presenting it to the inductor during the initial inductor design. The article provides information on coil leads/busswork and contacts that mechanically and electrically connect the induction coil head to the power supply. It concludes with a discussion on flux and oxide removal, leak and flow checking, silver plating, and electrical parameter measurement.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005770
EISBN: 978-1-62708-165-8
... (austenitizing/thermochemical treatment and quenching in one single chamber) Figure 5 illustrates the design of a cold chamber for gas quenching. Before the HPGQ process is started, the hot load is transported into the cold chamber. After closing a pressuretight door, the chamber is flooded...
Abstract
The gas quenching process is usually performed at elevated pressures, and is therefore, mostly referred to as high-pressure gas quenching (HPGQ). This article describes the physical principles of HPGQ; the two main types of equipment used, namely, single-chamber furnaces and cold chambers; and the three gases used, namely, nitrogen, helium, and argon. It also discusses two different groups of fixture materials used, namely, high-nickel-content alloys and carbon-fiber-reinforced carbon materials. The article exemplifies the process of dynamic gas quenching and how core hardness values can be predicted in industrial practices. It also discusses the improvements in distortion control with the application of gas-flow reversing and dynamic gas quenching.
Book Chapter
Industrial Applications of Analytics and Modeling for Carburizing and Quenching Processes
Available to PurchaseSeries: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007017
EISBN: 978-1-62708-450-5
... the quality parameters (such as case depth, microstructure, hardness, and distortion) for a given set of input parameters (including materials, component dimensions, and process cycle). Such a tool can be effectively leveraged to design a process cycle and optimize an industrial operation without the expense...
Abstract
Mathematical models have been used for over five decades in industrial heat-treating operations. Most of these modeling efforts have emanated from academia or research institutes, with the primary approach of mathematically capturing heat-treating processes and validating quality predictions. In this article, a contrarian but more realistic scenario is considered, where two industrial problem descriptions become the starting point. The technical complexity of the industry problem has been elaborated for a deeper understanding of the issue along with elaboration of the approach and potential methods for determining a solution. Then, quantitative analyses of practical industrial problems are demonstrated. Finally, the potential shift in these approaches with the advent of Industry 4.0 is outlined.
Book Chapter
Fluidized-Bed Quenching
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005794
EISBN: 978-1-62708-165-8
... the cooling rate required by the heat treatment process for the parts. Such a fluidized bed is also limited in its production capacity per square meter of bed surface, so that a large fluidized bed must be designed to maintain the quenching temperature. When the heat released from the hot treated parts...
Abstract
The fluidized bed provides a means for exchanging heat between a metal part, the solid particles, and the fluidizing gas and which is viable for quenching. This article briefly considers the design aspects of the gas distributor, plenum, container, immersed cooling tubes and surface air spray cooling system in the quenching fluidized bed. It describes the fundamental factors affecting quenching power of the fluidized beds, namely, particle size, particle material, fluidizing gas composition, fluidizing gas flow rate, bed temperature and pressure, and the arrangement of quenched parts with respect to one another and to the bed. The article discusses the advantages, disadvantages, various applications and processes, including conventional batch quenching, two-step batch quenching, and continuous quenching of fluidized bed quenching, in detail.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005987
EISBN: 978-1-62708-168-9
..., induction hardening, through hardening, and nitriding. In view of the emerging use of mathematical modeling and optimization, a brief overview of its application for process and design optimization is also provided. carburizing gears heat treatment induction hardening low-pressure carburizing...
Abstract
This article provides an overview of steel gear heat treating processes and brings out the nuances of the various important heat treating considerations for steel gear applications. The heat treatment processes covered are annealing, carburizing, hardening, low-pressure carburizing, induction hardening, through hardening, and nitriding. In view of the emerging use of mathematical modeling and optimization, a brief overview of its application for process and design optimization is also provided.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007013
EISBN: 978-1-62708-450-5
... and quenching in one single chamber) Figure 8 illustrates the design of a cold chamber for gas quenching. Before the HPGQ process is started, the hot load is transported into the cold chamber. After a pressure-tight door is closed, the chamber is flooded with the quench gas. Two fans are used...
Abstract
Gas quenching is one of the standard quenching technologies used in fabricating metallic components. The gas quenching process is usually performed at elevated pressures and is therefore mostly referred to as high-pressure gas quenching (HPGQ). This article presents the physical principles of HPGQ and also presents the equipment for gas quenching. The article describes the three types of gas that are mainly used for HPGQ: nitrogen, helium, and argon. It provides the mathematical model for heat fluxes and temperatures during HPGQ. The article also presents typical industrial applications for HPGQ in addition to equipment process and safety.
Book Chapter
Induction Quenching
Available to PurchaseSeries: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007011
EISBN: 978-1-62708-450-5
.... There are a variety of complex thermo-hydrodynamic processes involved in spray quenching, with the cooling intensity being a function of several factors, including: Surface temperature of the workpiece Type and purity of quenchant Pressure/flow Design of the quench assembly Number, size...
Abstract
This article presents the fundamentals of induction hardening (IH). It focuses on liquid quenching technology, but some specifics and brief comments are provided regarding alternative quenching media as well. The article provides a discussion on the following quench modes that can be applied in IH using liquid media: conventional immersion quenching, open spray quenching, flood quenching, and submerged quench or submerged spray quench. It also focuses on four primary methods of IH: scan hardening, progressive hardening, single-shot hardening, and static hardening.
Book Chapter
Fracture and Fractography of Tool Steels and Bearing Steels
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007029
EISBN: 978-1-62708-387-4
... applied stresses that arise during application. They also magnify stresses encountered during the manufacturing process, such as quenching during heat treatment. In addition to quenching stresses, sharp corners can also promote the buildup of residual stresses. As generous a radius as the design permits...
Abstract
This article describes some of the underlying factors of tool steel and bearing steel fractures and appearances. It also briefly introduces the general types of cold work and hot work tool steels and their typical performance requirements. This includes the importance of microstructural conditions achieved with powder metallurgy (PM) tool steels and the need for steel “cleanliness,” especially in preventing contact fatigue in bearings or bending fatigue in gears.
1