Skip Nav Destination
Close Modal
Search Results for
quench hardening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1308
Search Results for quench hardening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 September 2014
Fig. 9 Gas nozzle field for quench hardening of disks. (a) Photo of gas nozzle field used. (b) Diagram of distribution of nozzles. Source: Ref 13
More
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005934
EISBN: 978-1-62708-166-5
... Abstract Successful hardening depends on the hardenability of steel composition, the geometry of parts, the quenching system, and on the heat treating process used. This article provides a brief overview of the computation and use of quench factor analysis (QFA) to quantify as-quenched hardness...
Abstract
Successful hardening depends on the hardenability of steel composition, the geometry of parts, the quenching system, and on the heat treating process used. This article provides a brief overview of the computation and use of quench factor analysis (QFA) to quantify as-quenched hardness for carbon and low-alloy steels. As a single-value parameter alternative to Grossmann H-values, QFA is a potential method to qualify a quenching medium or process or to effectively monitor variation of quench severity due to either the quenchant or the system. The article describes the procedures for experimentally determining the quench factors by using a type 304 austenitic stainless steel probe. Typical examples of the utilization of QFA for quenchant characterization are provided. The article also describes the methods for experimentally generating time-temperature-property curves.
Image
Published: 01 December 1998
Fig. 1 End-quench hardenability limits for the hardenability grades of cast steel specified in SAE J435c. The nominal carbon content of these steels is 0.30% C (see Table 1 ). Manganese and other alloying elements are added as required to produce castings that meet these limits.
More
Image
Published: 01 January 1990
Fig. 2 End-quench hardenability limits for the hardenability grades of cast steel specified in SAE J435c. The nominal carbon content of these steels is 0.30% C (see Table 1 ). Manganese and other alloying elements are added as required to produce castings that meet these limits.
More
Image
Published: 01 October 2014
Fig. 27 End-quench hardenability limits for the hardenability grades of cast steel specified in SAE J435c. The nominal carbon content of these steels is 0.30% C. Manganese and other alloying elements are added as required to produce castings that meet these limits.
More
Image
Published: 01 August 2013
Fig. 5 Jominy end-quench hardenability test. (a) Standard end-quench test specimen and in a quenching jig. (b) Hardness plot and cooling rate as a function of distance from the quenched end
More
Image
in Hardenability of Carbon and Low-Alloy Steels[1]
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 2 Jominy end-quench apparatus (a) and method for presenting end-quench hardenability data (b)
More
Image
Published: 01 August 2013
Image
Published: 01 August 2013
Fig. 48 Effect of carbon and manganese on end-quench hardenability of 1050 steel. The steels with 1.29 and 1.27% Mn contained 0.06% residual chromium. Steels with 1.07 and 1.04% Mn contained 0.06 and 0.08% residual chromium, respectively. No other residual elements were reported.
More
Image
Published: 01 August 2013
Fig. 53 Effect of carbon content on the minimum end-quench hardenability of six series of alloy H-steels. The number adjacent to each curve indicates the carbon content of the steel, to be inserted in place of xx in alloy designation.
More
Image
in Metallography and Microstructures of Powder Metallurgy Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 33 Tempered martensitic microstructure of a quench-hardened and tempered P/M carbon steel (F-0008)
More
Image
in Metallography and Microstructures of Powder Metallurgy Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 38 Tempered martensitic microstructure of a quench-hardened and tempered P/M copper steel (FC-0208)
More
Image
in Metallography and Microstructures of Powder Metallurgy Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 47 Tempered martensitic microstructure of a quench-hardened and tempered part made from a prealloyed steel (FL-4605)
More
Image
Published: 01 December 1998
Fig. 11 End-quench hardenability curve for 1020 steel carbonitrided at 900 °C (1650 °F) compared with curve for the same steel carburized at 925 °C (1700 °F). Hardness was measured along the surface of the as-quenched hardenability specimen. Ammonia and methane contents of the inlet
More
Image
Published: 01 December 1998
Fig. 5 Effect of carbon content on the minimum end-quench hardenability of six series of alloy H-steels. The number adjacent to each curve indicates the carbon content of the steel, to be inserted in place of xx in alloy designation.
More
Image
Published: 01 December 1998
Fig. 2 End-quench hardenability bands for group O steels. (a) O1, source A. (b) O2, source A. (c) O1 and O2, source B. (d) 06. Hardenability bands from source B represent the data from five heats each for O1 and O2 tool steels. Data from source A were determined only on the basis of average
More
Image
Published: 01 August 2013
Fig. 25 End-quench hardenability curve for 1020 steel carbonitrided at 900 °C (1650 °F) compared with curve for the same steel carburized at 925 °C (1700 °F). Hardness was measured along the surface of the as-quenched hardenability specimen. Ammonia and methane contents of the inlet
More
Image
Published: 01 August 2013
Fig. 14 End-quench hardenability curve for 1020 steel carbonitrided at three different temperatures compared with curve for the same steel carburized at 925 °C (1700 °F). Hardness was measured along the surface of the as-quenched hardenability specimen. Ammonia and methane contents
More
Image
in Hardenable Carbon and Low-Alloy Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 2 Effect of carbon and manganese on end-quench hardenability of 1050 steel. The steels with 1.29 and 1.27% manganese contained 0.06% residual chromium. Steels with 1.07 and 1.04% manganese contained 0.06 and 0.08% residual chromium, respectively. No other residual elements were reported.
More
Image
in Hardenability of Carbon and Low-Alloy Steels[1]
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 8 Effect of carbon content on the minimum end-quench hardenability of six series of alloy H-steels. The number adjacent to each curve indicates the carbon content of the steel, to be inserted in place of xx in alloy designation.
More
1