Skip Nav Destination
Close Modal
By
David L. Bourell, Joseph J. Beaman, Jr., Donald Klosterman, Ian Gibson, Amit Bandyopadhyay
Search Results for
quantization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 28 Search Results for
quantization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 2 Sampling, resolution, and quantization. (a) SEM image of a cleaved silicon wafer. (b) Intensity trace (gray graph) along the white line shown on the image. The black dots represent sampling points. The black line is the digital approximation given by the sampling shown.
More
Image
Published: 01 December 2004
Fig. 3 The effect of resolution and quantization on a digital image. The same image as Fig. 2 in different levels of resolution and quantization. (a) 64 × 64 pixels and four gray levels. (b) 64 × 64 pixels and 256 gray levels. (c) 512 × 512 pixels and four gray levels. (d) 512 × 512 pixels
More
Image
Published: 01 January 1986
Fig. 4 Excitation of electronic energy levels. (a) Transition between two quantized energy levels. (b) Photoejection of electrons by x-radiation
More
Image
Published: 15 December 2019
Fig. 10 Excitation of electronic energy levels. (a) Transition between two quantized energy levels. (b) Photoejection of electrons by x-radiation
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003757
EISBN: 978-1-62708-177-1
... to microscopy of materials. The article describes the basic concepts of sampling and resolution and quantization of light microscopy, scanning electron microscopy, and transmission electron microscopy. It discusses the acquisition of a digital image that accurately represents the sample under observation...
Abstract
This article reviews the main theoretical and practical aspects of sequence normally followed in digital image-acquisition, processing, analysis, and output for material characterization. It discusses the main methods of digital imaging, image processing, and analysis, as applied to microscopy of materials. The article describes the basic concepts of sampling and resolution and quantization of light microscopy, scanning electron microscopy, and transmission electron microscopy. It discusses the acquisition of a digital image that accurately represents the sample under observation and output of the image to a printer. The methods used to enhance the digital image and to extract quantitative information are also described. Different types of image segmentation, namely, adaptive segmentation and contour-based segmentation, are reviewed. The article also presents case studies on the application of image processing and analysis to materials characterization.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003397
EISBN: 978-1-62708-195-5
... are quantized in the form of stacks of two-dimensional, finite thickness layers or cross sections. If these layers are very thin, then the parts made will be sufficiently accurate to suit a range of applications. Nearly all RP parts can be characterized by a stair-step effect that approximates the original...
Abstract
This article reviews various rapid prototyping (RP) processes such as stereolithography, powder sintering, hot melt extrusion, sheet lamination, solid ground curing, and three-dimensional printing. It discusses the various material prototypes produced by RP technology. The list of materials includes particulate and fiber-reinforced polymers, ceramic-matrix composites, and metal-matrix composites. The article also provides information on freeform-fabrication techniques for composite part lay-up.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001733
EISBN: 978-1-62708-178-8
... characteristic x-rays, as illustrated in Fig. 4 . Figure 4(a) shows a plot of absorbance versus energy for radiation lower in energy than the x-ray region. In this case, photon energy is used to promote electrons from low-lying orbitals to higher ones. The transition is from a stable quantized state...
Abstract
This article provides an introduction to x-ray spectrometry, and discusses the role of electromagnetic radiation, x-ray emission, and x-ray absorption. It focuses on the instrumentation of wavelength-dispersive x-ray spectrometers, and energy dispersive x-ray spectrometers (EDS) that comprise x-ray tubes, the analyzing system, and detectors. The fundamentals of EDS operation are described. The article also provides useful information on preparation of various samples, explaining the qualitative and quantitative analyses of EDS. It reviews the applications of the x-ray spectrometry.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001729
EISBN: 978-1-62708-178-8
... and negative charges are equal. The electrons are characterized by energy levels related to the radii of the shells from the atomic nucleus, and these energy levels are quantized or have discrete allowed values. If the atom absorbs energy from an external source, the electrons may be raised to higher energy...
Abstract
Inductively coupled plasma atomic emission spectroscopy (ICP-AES) is an analytical technique for elemental determinations in the concentration range of major to trace based on the principles of atomic spectroscopy. This article provides a description of the basic atomic theory, and explains the analytical procedures and various interference effects of ICP, namely, spectral, vaporization-atomization, and ionization. It provides a detailed discussion on the principal components of an analytical ICP system, namely, the sample introduction system; ICP torch and argon gas supplies; radio-frequency generator and associated electronics; spectrometers, such as polychromators and monochromators; detection electronics and interface; and the system computer with appropriate hardware and software. The article also describes the uses of direct-current plasma, and provides examples of the applications of ICP-AES.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001756
EISBN: 978-1-62708-178-8
... is brief, and the stored energy is released as the electrons from other orbitals drop into the vacant orbital. These electron transitions are of distinct energy jumps, that is, they are quantized, and the radiation emitted has specific wavelengths. Therefore, x-rays exiting the target have a few strong...
Abstract
X-ray diffraction techniques are useful for characterizing crystalline materials, such as metals, intermetallics, ceramics, minerals, polymers, plastics, and other inorganic or organic compounds. This article discusses the theory of x-rays and how they are generated and detected. It also describes the crystalline nature of certain materials and how the geometry of a unit cell, and hence crystal lattice, affects the direction and intensity of diffracted x-ray beams. The article concludes with several application examples involving measurements on single and polycrystalline materials.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006645
EISBN: 978-1-62708-213-6
... is from a stable quantized state to an unstable quantized state. The atom, ion, or molecule that is the target defines the energy difference. The sample absorbs only photons with energy very close to this energy difference. The result is the familiar absorption peak found in visible, ultraviolet...
Abstract
This article provides a detailed account of X-ray spectroscopy used for elemental identification and determination. It begins with an overview of the operating principles of X-ray fluorescence (XRF) spectrometer, as well as a comparison of the operating principles of wavelength-dispersive spectrometer (WDS) and energy-dispersive spectrometer (EDS). This is followed by a discussion on the mechanism and effects of X-ray radiation, X-ray emission, and X-ray absorption. The article then discusses components used, operation, and applications of WDS and EDS. Some of the factors and processes involved in sample preparation for XRF analysis are also included. The article further provides information on the practical procedure for and the applications of WDS and EDS qualitative and quantitative analyses.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006643
EISBN: 978-1-62708-213-6
... as the electrons from other orbitals drop into the vacant orbital. These electron transitions are of distinct energy jumps, that is, they are quantized, and the radiation emitted has specific wavelengths. Therefore, x-rays exiting the target have a few strong characteristic concentrations of specific wavelengths...
Abstract
This article describes the methods of X-ray diffraction analysis, the types of information that can be obtained, and its interpretation. The discussion covers the basic theories of X-rays and various types of diffraction experiments, namely single-crystal methods for polychromatic and monochromatic beams, powder diffraction methods, and the Rietveld method.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001109
EISBN: 978-1-62708-162-7
... of this is that the magnetic flux contained in the loop will be quantized in units of the flux quantum (Φ 0 ) ( Ref 57 ). When a thick nonsuperconducting barrier interrupts the current path, the supercurrent through the barrier is zero and the phases on either side of the barrier act independently. If the barrier...
Abstract
Superconductivity has been found in a wide range of materials, including pure metals, alloys, compounds, oxides, and organic materials. Providing information on the basic principles, this article discusses the theoretical background, types of superconductors, and critical parameters of superconductivity. It discusses the magnetic properties of selected superconductors and types of stabilization, including cryogenic stability, adiabatic stability, and dynamic stability. The article also focuses on alternating current losses in superconductors, including hysteresis loss, penetration loss, eddy current loss, and radio frequency loss. Furthermore, the article describes the flux pinning phenomenon and Josephson effects.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005153
EISBN: 978-1-62708-186-3
... inexpensive and relatively simple to build. However, modifying an analog controller involves effectively rebuilding it. In contrast, digital controllers are relatively expensive and have to be carefully designed to account for issues related to converting analog signals to digital signals such as quantization...
Abstract
The use of an effective control design, along with high-performance hardware and software for controller implementation, allows the use of feedback process control for manufacturing processes to improve part quality and consistency. This article provides an overview of control system design and its application to various manufacturing processes. It presents various examples of control system applications to show that appropriate control strategies increase the robustness of the processes by eliminating process sensitivity to system variations and external disturbances.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001750
EISBN: 978-1-62708-178-8
... of quantization must differ by one. The two possible orientations of these electrons in the applied field correspond to the projections M s = ± 1 2 along the magnetic-field direction. Each orientation is associated with a different energy; the one with the spins antiparallel to the external field ( M...
Abstract
Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is an analytical technique that can extract a great deal of information from any material containing unpaired electrons. This article explains how ESR works and where it applies in materials characterization. It describes a typical ESR spectrometer and explains how to tune it to optimize critical electromagnetic interactions in the test sample. It also identifies compounds and elements most suited for ESR analysis and explains how to extract supplementary information from test samples based on the time it takes electrons to return to equilibrium from their resonant state. Two of the most common methods for measuring this relaxation time are presented as are several application examples.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005639
EISBN: 978-1-62708-174-0
... by a welding laser are ∼1 eV energy ( Ref 19 ) and react with the valence electrons of the workpiece, which are of comparable energy ( Ref 20 ). This energy transfer is quantized (massless photons travel at only the speed of light, unlike electrons that can have variable velocity); hence, the photon loses all...
Abstract
Microjoining with high energy density beams is a new subject in the sense that the progress of miniaturization in industry has made the desire to make microjoints rapidly and reliably a current and exciting topic. This article summarizes the current state of microjoining with both electron and laser beams. It considers the elementary physical processes such as heat and fluid flow to introduce the reader to the phenomena that affect melting, coalescence, and solidification needed for a successful microweld. The various forces driving (and resisting) fluid flow are analyzed. The article discusses the equipment suitable for microjoining and the metallurgical consequences and postweld metrology of the process. It also provides examples of developmental welds employing laser and electron beam microwelding techniques.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005428
EISBN: 978-1-62708-196-2
... into Q orientations and allocated randomly to the orientations of the grains of the 3-D microstructure. This produces a 3-D microstructure with the correct texture but random MDF. This MDF is calculated and quantized into n b bins, such that S k is the number of boundaries with misorientations...
Abstract
The misorientation of a boundary of a growing grain is defined not only by its crystallography but also by the crystallography of the grain into which it is growing. This article focuses on the Monte Carlo Potts model that is typically used to model grain growth, Zener-Smith pinning, abnormal grain growth, and recrystallization. It introduces the basics of the model, providing details of the dynamics, simulation variables, boundary energy, boundary mobility, pinning systems, and stored energy. The article explains how to incorporate experimental parameters and how to validate the model by comparing the observed behavior quantitatively with theory. The industrial applications of the model are also discussed. The article also provides a wide selection of the algorithms for implementing the Potts model, such as boundary-site models, n -fold way models, and parallel models, which are needed to simulate large-scale industrial applications.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001730
EISBN: 978-1-62708-178-8
... atoms) the fine sample droplets produced by the nebulizer. Next is the monochromator, which isolates a wavelength of light characteristic of a particular quantized transition between electronic energy levels of the outer electrons of the selected analyte element. The third component is the light...
Abstract
Atomic absorption spectrometry (AAS) is generally used for measuring relatively low concentrations of approximately 70 metallic or semimetallic elements in solution samples. This article describes several features that are common to three techniques, namely, AAS, atomic emission spectrometry (AES), and atomic fluorescence spectrometry (AFS). It discusses the reasons for the extreme differences in AAS sensitivities that affect AFS and AES. The article provides information on the advantages and disadvantages of the Smith/Hieftje system and two types of background correction systems, namely, the continuum-source background correction and Zeeman background correction. It also provides a list of applications of conventional AAS equipment, which includes most of the types of samples brought to laboratories for elemental analyses.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001736
EISBN: 978-1-62708-178-8
... is of higher or lower energy than the incident photon. The energy of the scattered photons in these types of scattering events is h(v 0 ± v n ). Because the energy levels of the molecule are discrete and well defined, energy can be lost or gained by the molecule only in quantized or discrete amounts...
Abstract
This article introduces the principles of Raman spectroscopy and the representative materials characterization applications to which Raman spectroscopy has been applied. It includes a discussion of light-scattering fundamentals and a description of the experimental aspects of the technique. Emphasis has been placed on the different instrument approaches that have been developed for performing Raman analyses on various materials. The applications presented in the article reflect the breadth of materials characterization uses for Raman spectroscopy and highlight the analysis of bulk material and of surface and near-surface species.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006685
EISBN: 978-1-62708-213-6
... the incident photon. The energy of the scattered photons in these types of scattering events is h(v 0 ± v n ). Because the energy levels of the molecule are discrete and well defined, energy can be lost or gained by the molecule only in quantized or discrete amounts. Therefore, two types of scattered...
Abstract
This article introduces the principles of Raman spectroscopy and the representative materials characterization applications to which Raman spectroscopy has been applied. A discussion on light-scattering fundamentals and a description of the experimental aspects of the technique are included. Emphasis is placed on the different instrument approaches that have been developed for performing Raman analyses on various materials. The applications presented reflect the breadth of materials characterization uses for Raman spectroscopy and highlight the analysis of bulk material and of surface and near-surface species.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
Abstract
Failure of structural polymeric materials under cyclic application of stress or strain is a subject of industrial importance. The understanding of fatigue mechanisms (damage) and the development of constitutive equations for damage evolution, leading to crack initiation and propagation as a function of loading or displacement history, represent a fundamental problem for scientists and engineers. This article describes the approaches to predict fatigue life and discusses the difference between thermal and mechanical fatigue failure of polymers.
1