Skip Nav Destination
Close Modal
Search Results for
quantitative thermal analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 599 Search Results for
quantitative thermal analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005217
EISBN: 978-1-62708-187-0
... the theoretical basis of simplified and differential thermal analysis. Techniques for determining liquidus and solidus temperatures using cooling curves are also discussed. differential thermal analysis phase diagram solidification thermal analysis quantitative thermal analysis THERMAL ANALYSIS...
Abstract
Thermal analysis is a classical method of determining phase diagrams and can be used to analyze the deviation from solidification under equilibrium conditions. This article discusses the use of thermal analysis in industrial processes and in research. It describes the theoretical basis of simplified and differential thermal analysis. Techniques for determining liquidus and solidus temperatures using cooling curves are also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
.... Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001237
EISBN: 978-1-62708-170-2
...Abstract Abstract Quantitative image analysis has expanded the capabilities of surface analysis significantly with the use of computer technology. This article provides an overview of the quantitative image analysis and optical microscopy. It describes the various steps involved in surface...
Abstract
Quantitative image analysis has expanded the capabilities of surface analysis significantly with the use of computer technology. This article provides an overview of the quantitative image analysis and optical microscopy. It describes the various steps involved in surface preparation of samples prone to abrasion damage and artifacts for quantitative image analysis.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003250
EISBN: 978-1-62708-199-3
... Detection and quantification of elements with atomic number 5 or higher (older energy dispersive units with beryllium window detectors are limited to atomic number 11 or higher) Typical Uses Qualitative and quantitative chemical analysis for major and minor elements in metals and alloys...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold and precision methods, and sample requirements. The amount of material that needs to be sampled, operating principles, and limitations of the stated methods are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... and the characteristic sample dimensions from which this information is obtained. When classified by the types of information they obtain, techniques are often classified as: Elemental: What elements are present (qualitative elemental analysis)? In what concentration is each element present (quantitative...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered. bulk analysis chemical analysis failure analysis microscale analysis thermal analysis CHEMICAL ANALYSIS is a critical part of any failure investigation. With the right planning and proper...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
...Abstract Abstract Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006464
EISBN: 978-1-62708-190-0
... shadow of an object, where the eye perceives shape but not color or texture of an object.) Through-transmission is widely used for quantitative measurement of bulk or through-plane thermal diffusivity in planar or gently curved samples. Using a variant of the Parker method, transit time of energy...
Abstract
For most nondestructive evaluation (NDE) applications, the term thermography actually refers to surface-excited thermography (SET) that involves thermal mapping of surface temperature as heat flows from, to, or through a test object in response to excitation applied to the sample surface. This article discusses the strategies for implementing thermography for NDE, including the steady-state/whole-body approach and transient heat conduction. It describes the most common signal-processing methods, such as thermographic signal reconstruction, lock-in thermography, and pulsed-phase thermography. The article concludes with a discussion on the use of thermal methods for thermal diffusivity measurement and characterization of multilayer structures.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006453
EISBN: 978-1-62708-190-0
... configuration and selective excitation configuration of the signal-generation mechanisms in thermal nondestructive evaluation methods. The three widely used approaches to TNDE are surface-excited thermography, vibrothermography, and thermoelastic stress analysis. The article provides information on the common...
Abstract
Thermal nondestructive evaluation (TNDE) is an indirect process, so that regardless of the form of energy used to excite the sample, interaction with the internal structure of a part occurs through the process of heat conduction. This article discusses the steady-state configuration and selective excitation configuration of the signal-generation mechanisms in thermal nondestructive evaluation methods. The three widely used approaches to TNDE are surface-excited thermography, vibrothermography, and thermoelastic stress analysis. The article provides information on the common features, characteristics, and limitations of these approaches.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... or thermogravimetric analysis can be measured as a useful quality-control parameter of the material. Once cured, the mechanical and thermally conductive properties of the epoxy depend on the distribution of the MWCNTs throughout the epoxy as well as the extent of cure of the epoxy resin. The MWCNT distribution may...
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
... probe X-ray microanalysis inductively coupled plasma atomic emission spectroscopy ion-scattering spectroscopy material characterization microanalysis powders quantitative analysis scanning electron microscopy surface analysis X-ray photoelectron spectroscopy X-ray powder diffraction BULK...
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003460
EISBN: 978-1-62708-195-5
... that the part exhibited dimensional conformance. Next, sections should be removed to verify material chemistry. Cross sections are extracted and mounted to evaluate ply type, count, and orientation. Glass transition temperature and degree of resin cure should be determined using thermal analysis techniques...
Abstract
This article provides a summary of the concepts discussed in the articles under the Section “Failure Analysis” in ASM Handbook, Volume 21: Composites. Most of the information in this Section is geared toward organic-matrix composites, although there is some information on failure analysis and fractography of ceramic- and metal-matrix composites.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001747
EISBN: 978-1-62708-178-8
...Abstract Abstract Inert gas fusion is a method of determining the quantitative content of gases in ferrous and nonferrous materials where gases, such as hydrogen, nitrogen, and oxygen, are physically and chemically adsorbed by the materials and later removed and swept by from the fusion area...
Abstract
Inert gas fusion is a method of determining the quantitative content of gases in ferrous and nonferrous materials where gases, such as hydrogen, nitrogen, and oxygen, are physically and chemically adsorbed by the materials and later removed and swept by from the fusion area by an inert carrier gas. This article describes the operating principles and sample selection of inert gas fusion. It explains the mechanisms involved in the introduction of fusion gas, separation and detection of fusion gas by thermal-conductive and infrared detection methods. Additionally, the article explains the methods used for analyzing trace amounts of nitrogen, oxygen, and hydrogen in the carrier mediums, providing examples that aid in solving several problems.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006673
EISBN: 978-1-62708-213-6
...Abstract Abstract Thermogravimetric analysis (TGA) is a thermal analysis technique that measures the amount and rate of change in the weight of a material as a function of temperature or time in a controlled atmosphere. This article provides a detailed account of the concepts of TGA, covering...
Abstract
Thermogravimetric analysis (TGA) is a thermal analysis technique that measures the amount and rate of change in the weight of a material as a function of temperature or time in a controlled atmosphere. This article provides a detailed account of the concepts of TGA, covering the various criteria to be considered for specimen preparation and calibration of TGAs. The use of thermogravimetric analysis data in the assessment of failure analysis of plastics and the combined usage of TGA with other techniques to understand the changes in the sample are also covered. The article provides examples of applications and provides information on the interpretation of TGA.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003791
EISBN: 978-1-62708-177-1
...Abstract Abstract This article reviews how process variations influence the characteristics of thermal spray coatings. It describes various specimen preparation techniques, which allow accurate microstructural analysis. These techniques include sectioning, cleaning, mounting, planar grinding...
Abstract
This article reviews how process variations influence the characteristics of thermal spray coatings. It describes various specimen preparation techniques, which allow accurate microstructural analysis. These techniques include sectioning, cleaning, mounting, planar grinding, fine grinding, rough polishing, and etching. The article provides information on the problems associated with specimen preparation. It concludes with a discussion on the various methods of analysis for thermal spray coatings.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005731
EISBN: 978-1-62708-171-9
... the characterization of thermal spray powders which involves the determination of particle size and/or size distribution and phase analysis by x-ray diffraction. It provides information on preferential volatilization and rapid solidification that influence compositional differences. Wet chemical methods, spectographic...
Abstract
The raw materials used in thermal spray processes are a critical parameter in the finished coating because the variations in their size, morphology, chemistry, and phase composition can significantly impact coating properties. Therefore, it is important to test and characterize the raw materials. This article discusses various characterization methods for powders. Topics discussed include: methods for determining particle size and/or size distribution; powder and coating stoichiometry; particle chemistry; and phase analysis by x-ray diffraction. This article discusses the characterization of thermal spray powders which involves the determination of particle size and/or size distribution and phase analysis by x-ray diffraction. It provides information on preferential volatilization and rapid solidification that influence compositional differences. Wet chemical methods, spectographic analysis, and atomic absorption spectrometry are also discussed.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006444
EISBN: 978-1-62708-190-0
... for particularly small cracks and very small, shallow subsurface indications. Thermal Images Vibrothermography measurement yields a thermal image sequence, which can be interpreted manually, enhanced, and compressed using image- and data-analysis algorithms. The image sequence usually begins with a series...
Abstract
Vibrothermography, also known as sonic thermography, sonic infrared (IR), thermosonics, and vibroacoustic thermography, is a nondestructive evaluation (NDE) technique for finding cracks and delaminations through vibration-induced heating. This article describes the four parts of the vibrothermography process: vibration of the specimen by a transducer; conversion of vibrational energy into heat by a crack, delamination, and other contacting surfaces; conduction of the heat to an external surface; and infrared detection of the heat with a thermal camera.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003465
EISBN: 978-1-62708-195-5
...Abstract Abstract This article focuses on various thermal analysis techniques used to verify the cure of a polymer composite. The techniques include differential scanning calorimetry (DSC), modulated DSC, thermomechanical analysis, dynamic mechanical analysis, and dielectric analysis...
Abstract
This article focuses on various thermal analysis techniques used to verify the cure of a polymer composite. The techniques include differential scanning calorimetry (DSC), modulated DSC, thermomechanical analysis, dynamic mechanical analysis, and dielectric analysis. The article also provides an overview of the composite failure modes affected by matrix resin and testing approach.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005427
EISBN: 978-1-62708-196-2
... such as fatigue. The VAC tool MicroPore, a subroutine for commercial casting simulation codes, uses the calculated casting thermal histories to quantitatively predict the relevant characteristics of microporosity. It incorporates the complex, nonlinear physics of nucleation and growth of pores. It models both...
Abstract
Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering tool, such as virtual aluminum castings (VAC), developed and implemented for quickly developing durable cast aluminum power train components. It describes the procedures for the model development of the VAC system. These procedures include linking the manufacturing process to microstructure, linking microstructures to mechanical properties, linking material properties to performance prediction, and model validation and integration into the engineering process. The article discusses the benefits of the VAC system in process selection, process optimization, and improving the component design criteria.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003058
EISBN: 978-1-62708-200-6
... of service under which failure has occurred. Beginning with a discussion of the various stages of failure analysis of glass and ceramic materials, this article focuses on descriptive and quantitative fracture surface analysis techniques that are used in the examination of glass and surfaces created...
Abstract
Failure analysis is a process of acquiring specified information regarding the appropriateness of the design of a part, the competence with which the various steps of its manufacture have been performed, any abuse suffered by it in packing and transportation, or the severity of service under which failure has occurred. Beginning with a discussion of the various stages of failure analysis of glass and ceramic materials, this article focuses on descriptive and quantitative fracture surface analysis techniques that are used in the examination of glass and surfaces created by fracture and the interpretation of the fracture markings seen on these surfaces. Details are provided for the procedures for locating fracture origins, determining direction of crack propagation, learning the sequence of crack propagation, deducing the stress state at the time of fracture, and observing interactions between crack fronts and inclusions, etc. A separate fractography terminology is provided in this article.