Skip Nav Destination
Close Modal
Search Results for
quantitative characterization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 788 Search Results for
quantitative characterization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003759
EISBN: 978-1-62708-177-1
... distribution particle shape particle size quantitative characterization quantitative metallography spatial correlations total length total surface area volume fraction IT IS THE CENTRAL PRECEPT of materials science that processing governs microstructure and the microstructure influences...
Abstract
The objective of quantitative metallography/stereology is to describe the geometric characteristics of the features. This article discusses the geometric attributes of microstructural features that can be divided into: the numerical extents and the number density of microstructural features; derived microstructural properties; feature specific size, shape, and orientation distributions; and descriptors of microstructural spatial clustering and correlations. It emphasizes on the practical aspects of the measurement techniques and applications. The article also provides information on the quantitative metallographic methods for estimation of volume fraction, total surface area per unit volume, and total length of per unit volume.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
... Abstract The quantitative characterization of fracture surface geometry, that is, quantitative fractography, can provide useful information regarding the microstructural features and failure mechanisms that govern material fracture. This article is devoted to the fractographic techniques...
Abstract
The quantitative characterization of fracture surface geometry, that is, quantitative fractography, can provide useful information regarding the microstructural features and failure mechanisms that govern material fracture. This article is devoted to the fractographic techniques that are based on fracture profilometry. This is followed by a section describing the methods based on scanning electron microscope fractography. The article also addresses procedures for three-dimensional fracture surface reconstruction. In each case, sufficient methodological details, governing equations, and practical examples are provided.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004128
EISBN: 978-1-62708-184-9
... geometric parameters such as pit dimensions, surface roughness, loss of metal thickness, and volume increase due to pillowing to quantitatively characterize the types of corrosion. It also explains the two most common fatigue life assessment methods used in the military aerospace industry: fatigue crack...
Abstract
Corrosion, fatigue, and their synergistic interactions are among the principal causes of damage to aircraft structures. This article describes aircraft corrosion fatigue assessment in the context of different approaches used to manage aircraft structural integrity, schedule aircraft inspection intervals, and perform repair and maintenance of aircraft in service. It illustrates the types of corrosive attack observed in aircraft structures, including uniform, galvanic, pitting, filiform, fretting, intergranular, exfoliation corrosion, and stress-corrosion cracking. The article discusses geometric parameters such as pit dimensions, surface roughness, loss of metal thickness, and volume increase due to pillowing to quantitatively characterize the types of corrosion. It also explains the two most common fatigue life assessment methods used in the military aerospace industry: fatigue crack initiation and crack growth analysis.
Image
Published: 01 December 2004
Fig. 21 Typical applications of SEM in physical metallurgy. (a) Deformation marks on the surface of a fatigued copper specimen with protuberances at glide bands. The hill-and-valley profile and the glide systems are quantitatively characterized by stereoscopic measurement of height and spacing
More
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001837
EISBN: 978-1-62708-181-8
... quantitative geometrical methods for characterizing nonplanar fracture surfaces. Prominent techniques for studying fracture surfaces are based on the projected images, stereoscopic viewing, and sectioning. The article provides information on various roughness and materials-related parameters for profiles...
Abstract
The principal objective of quantitative fractography is to express the characteristics of features in the fracture surface in quantitative terms, such as the true area, length, size, spacing, orientation, and location. This article provides a detailed account of the development of more quantitative geometrical methods for characterizing nonplanar fracture surfaces. Prominent techniques for studying fracture surfaces are based on the projected images, stereoscopic viewing, and sectioning. The article provides information on various roughness and materials-related parameters for profiles and surfaces. The applications of quantitative fractography for striation spacings, precision matching, and crack path tortuosity are also discussed.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007033
EISBN: 978-1-62708-387-4
... quantitative comparisons of surface features. The most meaningful global attributes of a global fracture surface are its roughness, tortuosity, anisotropy, and extent of reentrant regions (folds). Roughness characterization of fracture surfaces is important for fracture mechanism analysis...
Abstract
The development of quantitative fractography (QF) parameters basically requires topological data of a fracture surface that can be derived from the stereological analysis of multiple projected scanning electron microscope (SEM) images; the profilometry-based techniques that measure the fracture surface profile along x-y sections of a fracture surface from metallographic sections or nondestructive techniques; and the three-dimensional reconstruction of the fracture surface topology using imaging methods such as stereo SEM imaging and confocal scanning laser microscopy. These three general methods of assessing fracture surface topology are reviewed in this article.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
... Abstract This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003757
EISBN: 978-1-62708-177-1
... Abstract This article reviews the main theoretical and practical aspects of sequence normally followed in digital image-acquisition, processing, analysis, and output for material characterization. It discusses the main methods of digital imaging, image processing, and analysis, as applied...
Abstract
This article reviews the main theoretical and practical aspects of sequence normally followed in digital image-acquisition, processing, analysis, and output for material characterization. It discusses the main methods of digital imaging, image processing, and analysis, as applied to microscopy of materials. The article describes the basic concepts of sampling and resolution and quantization of light microscopy, scanning electron microscopy, and transmission electron microscopy. It discusses the acquisition of a digital image that accurately represents the sample under observation and output of the image to a printer. The methods used to enhance the digital image and to extract quantitative information are also described. Different types of image segmentation, namely, adaptive segmentation and contour-based segmentation, are reviewed. The article also presents case studies on the application of image processing and analysis to materials characterization.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005686
EISBN: 978-1-62708-198-6
... infrared analysis medical devices polymeric biomaterials qualitative tests quantitative tests risk assessment thermal analysis CURRENTLY, there is a great deal of discussion about the merits of chemical and material characterization with regard to medical device biocompatibility. While it may...
Abstract
This article provides a background to the biological evaluation of medical devices. It discusses what the ISO 10993 standards require for polymeric biomaterials and presents examples of qualitative and quantitative tests that can be used to satisfy these requirements. The article describes infrared (IR) and thermal analyses that are used extensively to fingerprint polymeric materials. It also presents a discussion on the chemical characterization and risk assessment of extracts. Background information on risk assessments of extracts is also included. The four basic steps that are commonly used in the risk assessment process are discussed. These include hazard identification, dose-response assessment, and exposure assessment, and risk characterization.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001775
EISBN: 978-1-62708-178-8
... Abstract Rutherford backscattering spectrometry (RBS) is a major materials characterization technique that can provide information in a short analysis time. It is used for quantitative compositional analysis of thin films, layered structures, or bulk materials and to measure surface impurities...
Abstract
Rutherford backscattering spectrometry (RBS) is a major materials characterization technique that can provide information in a short analysis time. It is used for quantitative compositional analysis of thin films, layered structures, or bulk materials and to measure surface impurities of heavy elements on substrates of lighter elements. This article focuses on RBS and its principles, such as collision kinematics, scattering cross section, and energy loss. It describes the channeling effect and the operation of the RBS equipment. The article also provides information on the applications of RBS.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001735
EISBN: 978-1-62708-178-8
... exemplifies the applications of IR spectroscopy. infrared spectroscopy qualitative analysis quantitative analysis sample preparation sampling Overview Introduction Infrared (IR) spectroscopy is a useful technique for characterizing materials and providing information on the molecular...
Abstract
Infrared (IR) spectroscopy is a useful technique for characterizing materials and providing information on the molecular structure, dynamics, and environment of a compound. This article provides the basic principles and instrumentation of IR spectroscopy. It discusses the sampling techniques of IR spectroscopy, namely, attenuated total reflectance spectroscopy, diffuse reflectance spectroscopy, infrared reflection-absorption spectroscopy, emission spectroscopy, and photoacoustic spectroscopy, and chromatographic techniques. Explaining the qualitative analysis of IR spectroscopy, the article provides information on spectral absorbance-subtraction, analysis of components in spectral matrix mixture, and determination of exact peak location of broad profiles. It discusses the quantitative analysis that mainly includes Beer's law for single compound in single wave number. The article also exemplifies the applications of IR spectroscopy.
Book Chapter