Skip Nav Destination
Close Modal
Search Results for
pure plastic bending
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 549
Search Results for pure plastic bending
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2006
Fig. 19 Pure plastic bending of strip specimen. (a) Geometry of deformation. R i , inner radius of curvature; R o , outer radius of curvature; R n , radius of curvature of the neutral axis; R u , radius of currently unstretched fiber; R c , current radius of curvature of original
More
Image
Published: 01 January 2000
Fig. 7 Pure plastic bending of strip specimen. (a) Geometry of deformation. R i = inner radius of curvature; R o = outer radius of curvature; R n = radius of curvature of the neutral axis; R u = radius of currently unstretched fiber; R c = current radius of curvature of original
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005161
EISBN: 978-1-62708-186-3
...-plastic bending, and pure plastic bending. Sheet metal bendability is a critical factor in many forming operations. The article illustrates the derivation of two relevant bend-ductility equations. bendability bending bending stress elastic bending elastic-plastic bending flanging non...
Abstract
Bending is a common metalworking operation to create localized deformation in sheets (or blanks), plates, sections, tubes, and wires. This article emphasizes on the bending of sheet metal along with some coverage on flanging. It informs that variations in the bending stresses cause springback after bending, and discusses the variables and their effects on springback, as well as the methods to overcome or counteract them. These methods include overbending, bottoming or setting, and stretch bending. The article provides information on elastic bending, non-cylindrical bending, elastic-plastic bending, and pure plastic bending. Sheet metal bendability is a critical factor in many forming operations. The article illustrates the derivation of two relevant bend-ductility equations.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003262
EISBN: 978-1-62708-176-4
.... This article discusses the stress-strain relationships, strain curvature, and stress-moment equations for elastic, noncylindrical, elastic-plastic, and pure plastic bending conditions. It also reviews the distribution of residual stress and springback. stress-strain behavior bending deformation strain...
Abstract
A characteristic feature of bending is the inhomogeneous (nonuniform) nature of the deformation. Therefore, in a bent specimen, the strain and stress at a given point are dependent on the location of the point with respect to the neutral axis of the cross-sectional area of the specimen. This article discusses the stress-strain relationships, strain curvature, and stress-moment equations for elastic, noncylindrical, elastic-plastic, and pure plastic bending conditions. It also reviews the distribution of residual stress and springback.
Image
Published: 01 January 2006
Fig. 24 Simulated role of plasticity in springback for a draw-bend test. (a) Difference of springback angle (Δθ) for pure-elastic and elastoplastic springback simulations. (b) Differences in through-thickness stress distribution following pure-elastic and elastoplastic springback. R / t
More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005131
EISBN: 978-1-62708-186-3
... state). This approach is used to reproduce some classical springback results in the remainder of this section. Rigid, Perfectly Plastic Result The simplest springback result for pure bending makes use of a rigid (i.e., no elastic strains), perfectly plastic (no strain hardening) material model...
Abstract
Springback refers to the elastically driven change of shape that occurs after deforming a body and then releasing it. This article presents an introduction to the concepts of springback simulation as well as recommendations for its practice in a metal forming setting of thin beams or sheets. It discusses bending with tension and more complex numerical treatments. The article addresses the limitations of the various assumptions followed in springback simulation. It provides a discussion on the design of dies and tooling using an assumed springback prediction capability.
Image
Published: 01 November 2010
Fig. 2 Residual stress and residual strain distributions in a rectangular beam after being subjected to plastic deformation under pure bending and then unloaded
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003290
EISBN: 978-1-62708-176-4
.... It was necessary not only to control the specimen temperature accurately but also the ambient temperature for the machine to maintain constant system compliance. Considerable progress was made in developing a plastic equation of state for aluminum and identifying scaling laws for this and other pure metals...
Abstract
This article discusses stress relaxation testing on metallic materials, as covered by ASTM E 328. It reviews the two types of stress relaxation tests performed in tension, long-term and accelerated testing. The article illustrates load characteristics and data representation for stress relaxation testing used for the most convenient and common uniaxial tensile test. It concludes with information on compression testing, bend testing, torsion testing, and tests on springs.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006873
EISBN: 978-1-62708-387-4
.... The postfracture paperclip fragments are grossly deformed and do not display the original geometry of the paperclip when they are placed back together. Depending on the type of loading, plastic deformation may be in the form of necking or reduction of area, elongation, bending, twisting, lateral expansion, and so...
Abstract
This article provides practical guidance for interpreting macroscale fracture appearances. It focuses on metallic fracture features. The article covers the important distinctions between ductile and brittle fracture and the influence of the type of loading on the facture-surface orientation. It discusses both ductile fracture and brittle fracture macroscale features. Finally, it delves into fracture-initiation sites and metal-processing effects on fracture appearance, including castings, powder metals, additive manufacturing, and surface treatments.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000601
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of pure irons and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the grain-boundary cavitation; slip lines; intergranular...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of pure irons and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the grain-boundary cavitation; slip lines; intergranular fracture; cleavage fracture; notch-impact fracture; oxide inclusions and blowholes; ductile rupture; impact fracture and tensile-test fracture surfaces; fatigue striations; and crack initiation and propagation of pure irons.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005130
EISBN: 978-1-62708-186-3
... is a term used to describe a metal sheet bending process in which there is a concave hinge on the bending straight line. During the heating process, the heat input and cooling stream 1 ( Fig. 1 ) are combined to make the upper part of the sheet metal section (zone S 1 , Fig. 2 ) reach its plastic state...
Abstract
This article begins with a discussion on the energy sources used for thermal forming. These include electric induction coil, gas flame, plasma torch, and laser beam. The article discusses the mechanisms of forming and different modes of deformation. It describes the effect of process and material parameters on forming and the effect of metallurgical changes on mechanical property and microstructure of stainless steel. The article concludes with information on the applications of thermal forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005164
EISBN: 978-1-62708-186-3
... approximately 9% Si and weighing 150 g/m 2 (0.5 oz/ft 2 ). Minimum radii are for no rust on the outside of the bend after exposure to air for 25 cycles consisting of 30 min at 595 °C (1100 °F) and 30 min of cooling. (b) Coating of commercially pure aluminum weighing 350 g/m 2 (1.15 oz/ft 2 ). Minimum bend...
Abstract
This article provides an overview of some common sheet steel coatings available. It discusses the formability differences between coated and bare steel and provides some general guidelines on the forming of coated steels. Coated steels are classified according to the nature of the substrate, the type of coating, and the method used for its application. The article describes various coating types for steels such as zinc-coated steels, aluminum-coated steels, tin-coated steels, terne-coated steels, and organic-coated steels.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003380
EISBN: 978-1-62708-195-5
... and II data are generated using a mixed-mode bending (MMB) test ( 7 , 8 9 ). As shown in Fig. 3 , the apparent toughness generally increases monotonically between the pure opening mode I case and the pure shear mode II case. Furthermore, due to the complex micromechanisms involved, the scatter of test...
Abstract
Delamination is one of the most commonly observed failure modes in composite materials. This article describes the three fundamental fracture failure modes of composite delamination, namely, opening, in-plane shearing, and tearing or scissoring shearing modes. It discusses the characterization and analysis of delamination. The article also reviews the prediction of delamination factors, such as flexbeam fatigue life, and skin/stiffener pull-off strength and life.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005163
EISBN: 978-1-62708-186-3
... in determining the resultant springback, because this affects the conditions of deformation. For example, if a very small amount of stretching is superimposed during bending, springback can be reduced or even eliminated. Under pure bending, springback is proportional to R / t for cylindrical tooling ( Ref 15...
Abstract
This article provides information on the classification of high-strength steels (HSS) and advanced high-strength steels (AHSS) and tabulates designation of HSS and AHSS as recommended by the American Iron and Steel Institute. It reviews the major grades of HSS and AHSS that are used or will potentially be used in industrial applications. The article discusses different stamping issues such as edge cracking and springback, encountered during forming of AHSS, and lists guidelines for reducing springback in stamped components. It concludes with a discussion on the major advantages and disadvantages of using HSS and AHSS in automotive applications.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005169
EISBN: 978-1-62708-186-3
... q plan view area hp thickness direction mA interface; friction factor; strain- Q HR hardness; height max rate sensitivity exponent plastic constraint factor Brinell hardness MC r activation energy HSLA hexagonal close-packed MCS bending moment hT high-energy-rate forging MDO milliampere r0 radius...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003320
EISBN: 978-1-62708-176-4
... crack under shear. A , pure mode III; B , C , pure mode II Testing of Cylindrical Specimens Torsion-Rotating Bending Fatigue In a classical type of torsion-rotating bending fatigue test, cylindrical specimens similar to those for rotating bending fatigue are used ( Ref 2 ). A static...
Abstract
The main objective for the study of combined-stress fatigue is to obtain fatigue data for axles and to find the criterion for fatigue limit under combined stress. This article begins with a description of the stress states of combined stress and stress fields near crack tips. It provides an account of the various biaxial and multiaxial fatigue testing methods, specimen geometries, and stress intensity factors important in the study multiaxial fatigue. Widely used test methods are the torsion-rotating bending fatigue test and biaxial and triaxial fatigue tests. Common specimen geometries include rectangular plate specimens, cruciform specimens, compact tension shear specimens, compact shear specimens, mode II crack growth specimen, circumferentially notched cylindrical specimens, tubular specimens containing a slit, and solid cylindrical specimens containing a small hole or initial crack.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
.... Fig. 9 Three-point bend test Fig. 10 Schematic of the bend region defining direction of principal stresses and strains For pure plastic bending, in which elastic deformation can be ignored, the maximum tensile fiber strain is: (Eq 17) ε 0 = ln R o R i...
Abstract
This article discusses a number of workability tests that are especially applicable to the forging process. The primary tests for workability are those for which the stress state is well known and controlled. The article provides information on the tension test, torsion test, compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture and the stress state and friction conditions present in the bulk deformation process. These two factors are described and brought together in an experimental workability analysis.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005947
EISBN: 978-1-62708-166-5
... been the subject of scientific and industrial research for a very long time. Starting from pure empirical investigations, the understanding of the mechanisms and causes of distortion has significantly improved, not the least supported by modeling and simulation activities. The aim of this article...
Abstract
Dimensional and shape changes caused by heat treatment have been the subject of scientific and industrial research for a very long time. This article provides an overview of the complexity of distortion and stress generation during heat treatment of steels. It discusses the measurement and evaluation of dimensional and shape changes with examples. The article describes the mechanisms at work during the generation of stresses and distortion during heat treatment. A hypothetical experiment with increasing application to real life is used to develop a systematization of unavoidable size and shape changes. The article also provides information on the carriers of distortion potential that cause measureable size and shape changes.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... In a completely reversed cycle ( S min = − S max ), the mean stress is 0; in a pure tension pulsating load, the mean stress is S m = S a ; and in a pure compressive load, the mean stress is S m = − S a . The stress ratio is the algebraic ratio of two specified stress values in a stress cycle. Two...
Abstract
Fatigue failures may occur in components subjected to fluctuating (time-dependent) loading as a result of progressive localized permanent damage described by the stages of crack initiation, cyclic crack propagation, and subsequent final fracture after a given number of load fluctuations. This article begins with an overview of fatigue properties and design life. This is followed by a description of the two approaches to fatigue, namely infinite-life criterion and finite-life criterion, along with information on damage tolerance criterion. The article then discusses the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided. crack-growth simulation elastic-plastic fracture...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
1