Skip Nav Destination
Close Modal
Search Results for
pulse width modulation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 89 Search Results for
pulse width modulation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Power Supplies for Induction Heat Treating, Brazing, and Soldering
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 28 Pulse-width modulation control of the IFP inverter. (a) Maximum voltage (power) across work coil (100% duty cycle). (b) Limited voltage (power) across work coil (30% duty cycle)
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001337
EISBN: 978-1-62708-173-3
...-current and constant-voltage power sources are listed in a table. The article describes the open-circuit voltage characteristics and power source control methods. The control methods employ either pulse width modulation (PWM) or frequency modulation (FM). arc welding constant-current power sources...
Abstract
Power sources are apparatuses that are used to supply current and voltages that are suitable for particular welding processes. This article describes power sources for arc welding, resistance welding, and electron-beam welding. The more-common welding processes that use constant-current and constant-voltage power sources are listed in a table. The article describes the open-circuit voltage characteristics and power source control methods. The control methods employ either pulse width modulation (PWM) or frequency modulation (FM).
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001262
EISBN: 978-1-62708-170-2
... and duty cycle. For example, a 1000 Hz pulse with a duty cycle of 50% has a pulse width of 0.5 ms. Process Control Microprocessor-controlled modulation of applied direct current to improve the electrodeposition process has found use in reel-to-reel selective plating, automatic tab plating, barrel...
Abstract
Pulsed-current plating can be defined simply as metal deposition by pulsed electrolysis, which involves using interrupted direct current to electroplate parts. This article discusses the advantages and limitations of pulsed-current plating and provides information on the process principles and control, solution composition, operating conditions, and necessary equipment modifications.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001260
EISBN: 978-1-62708-170-2
... strategies is the use of hydrodynamic modulation that is synchronized in some manner with the pulsed plating. Multiple-layer alloys are often found to exhibit unusual (and sometimes highly desirable) mechanical, magnetic, electrical, and chemical properties, especially when the modulation wavelength λ...
Abstract
Multiple-layer alloy electrodeposition involves the formation of an inhomogeneous alloy consisting of lamellae of different composition. This article reviews the process description, engineering parameters, characterization, and applications of multiple-layer alloys. Pulsed-current plating and pulsed-potential plating are also discussed.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005838
EISBN: 978-1-62708-167-2
... are active (active meaning ON for constant voltage, OFF for the constant-current form); power is conserved when horizontally opposed switches are active. Pulse width modulation (PWM) of inductive loads is implemented easily, because by alternating between power-flow and power-conserve states, the current...
Abstract
This article provides a brief description of load conditions for single-shot heat treating, vertical scanning, and brazing and soldering. It discusses the various power components used in power supplies. These include capacitors, integrated power module, transformers, and various switching devices, namely, silicon-controlled rectifiers, insulated-gate bipolar transistors, and metal-oxide semiconductor field-effect transistors. The article also provides information on frequency-multiplication harmonic-induction power supplies, namely, push-pull and half-bridge inverters and full-bridge inverters. Series resonant and parallel resonant circuits and their tuning calculations associated with output networks are also discussed. The article describes the frequency range of simultaneous dual-frequency induction heating power supply, and discusses the advantages, applications, and technical background of independently controlled frequency and power (IFP) induction heating power supply. It concludes with a description of the developments in control systems for modern induction power supplies.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005647
EISBN: 978-1-62708-174-0
... photon scanning tunneling microscopy PW projection welding PWAA postweld artificial aging PWHT postweld heat treatment PWM pulse width modulation Q&T quenched and tempered R roentgen R a surface roughness in terms of arithmetic average RA rosin fully activated...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0005663
EISBN: 978-1-62708-173-3
... wiring board STEM scanning transmission electron co infinity oc is proportional to; varies as PWHT postweld heat treatment microscope!microscopy STM!S scanning tunneling microscopy! f integral of PWM pulse width modulation < less than spectroscopy « much less than Q&T quenched and tempered SUS Saybolt...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001750
EISBN: 978-1-62708-178-8
... H pp = g β h Δ H pp A modulation frequency of 100 kHz may be used for linewidths as narrow as 0.01 G, but will appreciably distort lines less than this width. As the modulation amplitude H m is gradually increased, the observed linewidth remains unchanged as long...
Abstract
Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is an analytical technique that can extract a great deal of information from any material containing unpaired electrons. This article explains how ESR works and where it applies in materials characterization. It describes a typical ESR spectrometer and explains how to tune it to optimize critical electromagnetic interactions in the test sample. It also identifies compounds and elements most suited for ESR analysis and explains how to extract supplementary information from test samples based on the time it takes electrons to return to equilibrium from their resonant state. Two of the most common methods for measuring this relaxation time are presented as are several application examples.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006464
EISBN: 978-1-62708-190-0
... to pulsed, step, and modulated excitation ( Ref 22 ). The method builds on the predictable straight-line behavior of the logarithmic temperature-versus-time plot and amplifies deviations from linearity. In TSR, the logarithmic temperature response of each pixel is fitted to a simple equation (e.g., a low...
Abstract
For most nondestructive evaluation (NDE) applications, the term thermography actually refers to surface-excited thermography (SET) that involves thermal mapping of surface temperature as heat flows from, to, or through a test object in response to excitation applied to the sample surface. This article discusses the strategies for implementing thermography for NDE, including the steady-state/whole-body approach and transient heat conduction. It describes the most common signal-processing methods, such as thermographic signal reconstruction, lock-in thermography, and pulsed-phase thermography. The article concludes with a discussion on the use of thermal methods for thermal diffusivity measurement and characterization of multilayer structures.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006469
EISBN: 978-1-62708-190-0
... Abstract This article considers the two primary methods used for ultrasonic inspection: pulse-echo and the transmission methods. Pulse-echo inspection can be accomplished with longitudinal, shear, surface (Rayleigh), or Lamb (plate) waves using a diverse range of transducers. The article...
Abstract
This article considers the two primary methods used for ultrasonic inspection: pulse-echo and the transmission methods. Pulse-echo inspection can be accomplished with longitudinal, shear, surface (Rayleigh), or Lamb (plate) waves using a diverse range of transducers. The article discusses the principles of each of these inspection methods. It describes the applications and the basic data formats for single-element transducer-based systems, including A-scans, B-scans, and C-scans. The article provides information on electronic equipment used for ultrasonic inspection. It also describes how specific material conditions produce and modify A-scan indications. The article provides information on the controls and their functions for the display unit of the electronic equipment. It describes the techniques used for the identification and characterization of flaws, namely, surface (Rayleigh) wave and ultrasonic polar scan techniques.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... much higher pulse energies up to 80 J with pulse frequency limited by the maximum power rating of the laser. Lens Choice Lens choice is based on metal thickness, composition, and quality requirements and on beam diameter. Wider kerf widths are obtained by using longer focal length lenses...
Abstract
Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment: heat treating, cladding, surfacing, glazing, and marking.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.9781627081733
EISBN: 978-1-62708-173-3
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006460
EISBN: 978-1-62708-190-0
... approximately τ V L , the displacement pulse amplitude saturates and its width increases. Fig. 3 Thermoelastic generation with penetrating light. (a) Laser pulse of duration τ L and a layer at depth d heated by this laser pulse in a given medium. An observation point is shown in this medium at depth...
Abstract
Laser-ultrasonics is a particular implementation of ultrasonic nondestructive inspection in which ultrasound is generated and detected by lasers. This article discusses the various mechanisms that ensure ultrasound generation and explains the possibility to get the equivalent of phase-array by numerical processing of an array of previously acquired laser-ultrasonic signals. The article describes the ultrasound generation by thermoelastic mechanism and ablation or vaporization. It illustrates the principle of optical detection of ultrasound with confocal Fabry-Perot interferometer and photorefractive two-wave mixing interferometer. The article concludes with information on the industrial applications of laser-ultrasonics, including thickness measurement, flaw detection, and material characterization.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006473
EISBN: 978-1-62708-190-0
.... It reviews the determination of area-amplitude and distance-amplitude curves of a straight-beam pulse-echo ultrasonic inspection system. The article discusses the three principal conventional manual ultrasonic sizing techniques: 6 dB drop technique, maximum-amplitude technique, and 20 dB drop technique...
Abstract
This article discusses the inspection/reference standards that are absolutely critical for proper application of ultrasonic inspection systems. Many of the standards and specifications for ultrasonic inspection require the use of standard reference blocks. The article lists the variables that should be considered when selecting standard reference blocks and describes the three types of standard blocks ordinarily used for calibration or reference: area-amplitude blocks, distance-amplitude blocks, and blocks of the type sanctioned by the International Institute of Welding. It reviews the determination of area-amplitude and distance-amplitude curves of a straight-beam pulse-echo ultrasonic inspection system. The article discusses the three principal conventional manual ultrasonic sizing techniques: 6 dB drop technique, maximum-amplitude technique, and 20 dB drop technique. It provides information on the dimension-measurement applications of ultrasonic inspection methods.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001732
EISBN: 978-1-62708-178-8
... to determine lifetimes from several hundred nanoseconds to several hundred picoseconds. Heterogeneous decay due to the emission from species with different fluorescence lifetimes can be resolved into the individual lifetime components using pulsed or phase-modulation techniques. The phase-modulation...
Abstract
This article provides an introduction to the molecular fluorescence spectroscopy, and discusses the theory of fluorescence and its application to chemical analysis. It provides information on fluorescence that occurs in organic compounds and inorganic atoms and molecules. The article describes the instruments used in the spectroscopy, namely, radiation sources, sample holders, wavelength selectors, detectors, computers, and ratiometric instruments. The practical considerations include solvent effects, corrected spectra, wavelength calibration, temperature, and scattered light. The article also discusses the uses of some special techniques used in molecular fluorescence spectroscopy.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001752
EISBN: 978-1-62708-178-8
... The spin-echo method, in addition to measuring the resonant frequency, can be used to measure T 1 and T 2 . For example, if the echo amplitude is determined as a function of the first pulse to echo separation time 2τ, it decays with a time constant T 2 . The shape and width of the echo reflect...
Abstract
Nuclear magnetic resonance (NMR) is a form of radio frequency spectroscopy based on interactions between nuclear magnetic dipole or electric quadrupole moments and an applied magnetic field or electric-field gradient. This article provides an overview of the fundamental principles of nuclear magnetic resonance with emphasis on nuclei properties, the basic equation of nuclear magnetic resonance, the classical theory of nuclear magnetization, line broadening, and measurement sensitivity. It describes the pulse-echo method for observing NMR. The article provides useful information on ferromagnetic nuclear resonance and nuclear quadrupole resonance, and illustrates the experimental arrangement of NMR with a block diagram. It also presents several application examples.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005639
EISBN: 978-1-62708-174-0
... will be in precisely controlling the beam energy, travel speed, travel path, beam focus (spot size), and any pulsing or modulation applied to the beam. Closed-loop process controls will need to employ high-bandwidth methods, because the characteristic times for microjoining processes will be quite short. Because...
Abstract
Microjoining with high energy density beams is a new subject in the sense that the progress of miniaturization in industry has made the desire to make microjoints rapidly and reliably a current and exciting topic. This article summarizes the current state of microjoining with both electron and laser beams. It considers the elementary physical processes such as heat and fluid flow to introduce the reader to the phenomena that affect melting, coalescence, and solidification needed for a successful microweld. The various forces driving (and resisting) fluid flow are analyzed. The article discusses the equipment suitable for microjoining and the metallurgical consequences and postweld metrology of the process. It also provides examples of developmental welds employing laser and electron beam microwelding techniques.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006565
EISBN: 978-1-62708-290-7
... diffusivity and short optical absorption depth, which determine the nature of its interaction with the laser pulse. This simple mechanism works well to explain LIFT of metals with nanosecond laser pulses. For nanosecond and shorter laser pulse widths, the morphology of the transferred metal will vary...
Abstract
This article discusses the basic operating principles, industrial applications, and advantages as well as the parameters influencing the process of laser-induced forward transfer (LIFT) of solid materials, liquid materials, laser-absorbing layers, intact structures, and metallic 3D microstructures in additive manufacturing.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
...). For typical constant-voltage power supplies, this includes globular transfer, axial spray transfer, and short-circuiting transfer ( Ref 8 ). Pulsed current and more sophisticated welding power supply control strategies can influence solidification characteristics and microstructure, help ensure consistent...
Abstract
Fusion-based additive manufacturing (AM) processes rely on the formation of a metallurgical bond between a substrate and a feedstock material. Energy sources employed in the fusion AM process include conventional arcs, lasers, and electron beams. Each of these sources is discussed, with an emphasis on their principles of operation, key processing variables, and the influence of each source on the transfer of heat and material. Common energy sources used for metals AM processes, particularly powder-bed fusion and directed-energy deposition, are also discussed. Brief sections at the end of the article discuss the factors dictating the choice of each of these energy sources and provide information on alternative sources of AM.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
..., most HLAW applications now use pulsed GMAW sources. However, spray transfer can be used to produce higher arc heat input for fast travel speed applications. Arc voltage can be adjusted to increase or decrease the arc length. A longer arc length generally produces a wider melt width at the p surface...
Abstract
Hybrid laser arc welding (HLAW) is a metal joining process that combines laser beam welding (LBW) and arc welding in the same weld pool. This article provides a discussion on the major process variables for two modes of operation of HLAW, namely, stabilization mode and penetration mode. The major process variables for either mode of operation include three sets of welding parameters: the variables for the independent LBW and gas metal arc welding processes and welding variables that are specific to the HLAW process. The article discusses the advantages, limitations, and applications of the HLAW and describes the major components and consumables used for HLAW. The components include the laser source, gas metal arc welding source, hybrid welding head, and motion system. The article also describes the typical sources of defects and safety concerns of HLAW.
1