1-20 of 446 Search Results for

protective coatings

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001318
EISBN: 978-1-62708-170-2
... edges of the Shuttle Orbiter vehicle. This article details the fundamentals of protecting carbon-carbon composites. It explains various coating deposition techniques: pack cementation, chemical vapor deposition, and slurry coatings. The article discusses typical coating architectures in accordance with...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003844
EISBN: 978-1-62708-183-2
... Abstract Paints and protective coatings are the most common means of protecting materials from deterioration. This article focuses on coating degradation resulting from the environmental interaction with the coatings. The major environmental influences that result in coating degradation include...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006040
EISBN: 978-1-62708-172-6
... Abstract This article presents information regarding the use of protective coatings in municipal potable water systems, including raw water collection and transmission, water treatment plants, and treated water distribution. It provides useful guidance for the selection and use of protective...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006059
EISBN: 978-1-62708-172-6
... those component parts of the system are exposed. It presents useful guidelines for selecting and using protective coatings in municipal sewerage collection systems and water reclamation facilities in wastewater treatment plants. The article includes annotated flow diagrams of a wastewater collection...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.9781627081726
EISBN: 978-1-62708-172-6
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006029
EISBN: 978-1-62708-172-6
... Abstract This article focuses on technologies in the protective coatings field, namely, polysiloxane hybrids and related materials. Industrial maintenance topcoats, including silicone alkyds, silicone epoxies, and polysiloxanes are reviewed. The article discusses two major application areas of...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006049
EISBN: 978-1-62708-172-6
... Abstract The use of zinc in corrosion-protective coatings is due to its higher galvanic activity relative to that of steel. Pure zinc dust provides the best sacrificial protection to steel in a galvanic couple. Zinc-rich coatings can be subcategorized according to the type of binder material...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006036
EISBN: 978-1-62708-172-6
... Abstract Polyaspartic coating technology has found utility in a variety of coating applications, including corrosion protection and flooring topcoats, as these coatings are based on aliphatic polyisocyanates and aliphatic diamines. This article describes the chemistry of polyaspartic esters and...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006035
EISBN: 978-1-62708-172-6
... protective coating strategies in Generation 3 Plants. boiling water reactors coating nuclear energy pressurized water reactor protective coating thermal conductivity Surface coatings are essential in all facilities that process nuclear materials or use nuclear fission for power generation. At...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006011
EISBN: 978-1-62708-172-6
... containing at least two hydroxyl (alcohol) groups. This article provides a detailed account of the protective coatings used in the building, infrastructure, and architectural markets. It focuses on the various types of polyurethane coatings used in these applications: moisture-cure and two-pack aromatic...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006047
EISBN: 978-1-62708-172-6
... Abstract Two-component polyurea elastomeric coating/lining systems are the newest technology in the protective coating/lining industry and a wide variety of applications have been developed. These include coating/lining applications over concrete, geotextile membranes, various metals for...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003820
EISBN: 978-1-62708-183-2
... discusses the corrosion protection in magnesium assemblies and the protective coating systems used in corrosion protection practices. The protection schemes for specific applications and production of novel magnesium alloys with improved corrosion resistance are also described. The article concludes with a...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006073
EISBN: 978-1-62708-172-6
... Abstract This article discusses the environmental influences on protective coating films that can result in deterioration. These environmental factors can be classified into four groups: (1) energy: solar, heat; (2) permeation: moisture, solvent, chemical, and gas; (3) stress: drying and curing...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006016
EISBN: 978-1-62708-172-6
... installation of the protective coating/lining system. Prior to beginning surface-preparation operations, many specifications will require a presurface-preparation inspection to verify the correction of fabrication defects and removal of surface contamination such as grease, oil, cutting compounds, lubricants...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006012
EISBN: 978-1-62708-172-6
... conditions, these coatings can change in some fashion so their appearance or protective capabilities are enhanced. Environmental stimuli for smart coatings may be of a physical nature, such as impact, or of a chemical nature, such as pH changes. Typically, the coating becomes activated in some way by...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... methods. The article also describes the properties, microstructure, and thermal exposure of superalloys. It further discusses the effects of environmental factors on superalloys, including oxidation and hot corrosion. Protective coatings are also discussed. The article provides information on the...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006030
EISBN: 978-1-62708-172-6
... Abstract This article discusses the occupational health hazards related to industrial protective coating application and removal. It explains the health hazards associated with coating constituents such as lead, cadmium, chromium, arsenic, silica, and asbestos. The article also discusses hazard...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006024
EISBN: 978-1-62708-172-6
... Society for Protective Coatings' (SSPC) standards and NACE International standards as well as the International Organization for Standardization (ISO) standards and International Concrete Repair Institute (ICRI) guidelines for surface cleanliness. blast cleaning extraction grinding wheels...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003151
EISBN: 978-1-62708-199-3
... Abstract The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... Abstract High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely...