Skip Nav Destination
Close Modal
Search Results for
protective coatings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2209 Search Results for
protective coatings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006059
EISBN: 978-1-62708-172-6
... those component parts of the system are exposed. It presents useful guidelines for selecting and using protective coatings in municipal sewerage collection systems and water reclamation facilities in wastewater treatment plants. The article includes annotated flow diagrams of a wastewater collection...
Abstract
This article provides information on the municipal wastewater system components such as piping, pump stations, headworks, clarifiers, aeration structures, digesters, biosolids dewatering equipment, and sludge stabilization. It explains the major corrosion damage mechanisms to which those component parts of the system are exposed. It presents useful guidelines for selecting and using protective coatings in municipal sewerage collection systems and water reclamation facilities in wastewater treatment plants. The article includes annotated flow diagrams of a wastewater collection system, wastewater treatment plants, and spreadsheets listing the most widely used generic coating systems by structure and substrate material. It concludes with a section on quality watchouts when selecting or using protective coatings in municipal wastewater systems.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006040
EISBN: 978-1-62708-172-6
... Abstract This article presents information regarding the use of protective coatings in municipal potable water systems, including raw water collection and transmission, water treatment plants, and treated water distribution. It provides useful guidance for the selection and use of protective...
Abstract
This article presents information regarding the use of protective coatings in municipal potable water systems, including raw water collection and transmission, water treatment plants, and treated water distribution. It provides useful guidance for the selection and use of protective coatings in these municipal water systems. The most commonplace corrosion-damage mechanisms are highlighted. The article describes the most common materials of construction found in municipal water systems, namely, cast iron, ductile iron, carbon steel, precast concrete cylinder pipe and reinforced concrete pipe, prestressed concrete tanks, and stainless steel. It provides information on the most common generic coating systems used for new steel tanks and water storage tanks. It concludes with a discussion of quality watch-outs when selecting or using protective coatings in municipal water systems.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001318
EISBN: 978-1-62708-170-2
... of the fundamentals of protecting carbon-carbon composites and explains the various coating deposition techniques, namely, pack cementation, chemical vapor deposition, and slurry coatings. It includes information on the practical limitations of coatings for the carbon-carbon composites. aerospace and defense...
Abstract
Carbon-carbon is a unique composite material in which a nonstructural carbonaceous matrix is reinforced by carbon fibers to create a heat-resistant structural material that finds application in the aerospace and defense industries. This article provides a detailed account of the fundamentals of protecting carbon-carbon composites and explains the various coating deposition techniques, namely, pack cementation, chemical vapor deposition, and slurry coatings. It includes information on the practical limitations of coatings for the carbon-carbon composites.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003844
EISBN: 978-1-62708-183-2
... Abstract Paints and protective coatings are the most common means of protecting materials from deterioration. This article focuses on coating degradation that results from the environmental interaction with the coatings. The major environmental influences of the degradation include energy...
Abstract
Paints and protective coatings are the most common means of protecting materials from deterioration. This article focuses on coating degradation that results from the environmental interaction with the coatings. The major environmental influences of the degradation include energy (solar radiation, heat and temperature variation, and nuclear radiation), permeation (moisture, solvent retention, chemical, and oxygen), stress (drying and curing, vibration, and impact and abrasion), and biological influences (microbiological and macrobiological).
Image
Published: 30 September 2015
Image
Published: 01 January 2006
Fig. 4 Once protective coatings have been removed from playground equipment, corrosion occurs rather rapidly, accelerated by dirt, moisture, and other environmental factors including human contact. Courtesy of the NRPA NPSI
More
Image
Published: 01 January 2003
Image
Published: 01 January 2003
Fig. 22 Example 2 . Outline of H-pile pier protected using a protective coating and impressed-current anodes
More
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005712
EISBN: 978-1-62708-171-9
..., and vacuum brazing. The article provides information on the selection of overlays and materials such as chromium-carbide-base overlays and tungsten carbide metal-matrix composites. gas metal arc welding high-velocity oxyfuel thermal spray coating material selection oil sand protective overlays...
Abstract
This article focuses on coatings and overlays adopted for use as wear- and corrosion-resistant materials in oil sand processing. It describes the most common application processes for oil sand coatings and overlays, including welding, high-velocity oxyfuel thermal spray, laser cladding, and vacuum brazing. The article provides information on the selection of overlays and materials such as chromium-carbide-base overlays and tungsten carbide metal-matrix composites.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.9781627081726
EISBN: 978-1-62708-172-6
Image
Published: 01 January 2001
Fig. 15 Effect of corrosion-protection coatings on the lightning-strike resistance of fasteners for composites. (a) Fastener with corrosion protection finish, struck by 100,000 A. Heavy damage to composite. (b) Bare fastener struck by 100,000 A. No damage to composite
More
Image
Published: 01 January 2006
Fig. 9 High-temperature coatings protect the base metal by forming a protective oxide, which acts as a barrier to the corrosive gases.
More
Image
Published: 30 September 2015
Fig. 39 Components of a weight coat system including (1) corrosion-protective coating and (2) reinforced concrete outer layer
More
Image
Published: 30 September 2015
Fig. 11 Use of electroless Ni coatings for edge protection. (a) Coating over a thin layer of Cu. Etched 2% nital. (b) Protection of a tensile fracture surface. Unetched
More
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006029
EISBN: 978-1-62708-172-6
... Abstract This article focuses on technologies in the protective coatings field, namely, polysiloxane hybrids and related materials. Industrial maintenance topcoats, including silicone alkyds, silicone epoxies, and polysiloxanes are reviewed. The article discusses two major application areas...
Abstract
This article focuses on technologies in the protective coatings field, namely, polysiloxane hybrids and related materials. Industrial maintenance topcoats, including silicone alkyds, silicone epoxies, and polysiloxanes are reviewed. The article discusses two major application areas of protective coatings, namely, architectural coatings and automotive clear coats.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004125
EISBN: 978-1-62708-184-9
... Abstract This article describes the protective coatings technology used in naval aircrafts. It reviews the future needs and trends of the protective coatings technology based on advancing technology, environmental concerns, and operational requirements. The article discusses the standard...
Abstract
This article describes the protective coatings technology used in naval aircrafts. It reviews the future needs and trends of the protective coatings technology based on advancing technology, environmental concerns, and operational requirements. The article discusses the standard finishing systems for aircrafts: the surface pretreatment system, primer, topcoat, advanced-performance topcoat, self-priming topcoat, and specialty coatings. It presents safe compliant solutions to environmental problems associated with the protective coatings technology. These solutions include the use of environmental regulations and hazardous materials, nonchromated pretreatments, waterborne technology, high-solids technology, and touch-up paints. The article also deals with the use of electrodeposition coatings, powder coatings, adhesive films, paint application equipment, and non-chromated sealants in the protective coatings technology.
Image
Published: 30 September 2015
Image
Published: 01 January 1994
Fig. 4 Schematic of coating architecture used to protect carbon-carbon for extended-life applications
More
Image
Published: 01 January 2003
Fig. 3 Principles and mechanism of galvanic protection of a substrate by a coating. (a) Galvanic protection of a steel substrate at a void in a zinc coating. Corrosion of the substrate is light and occurs at some distance from the zinc. (b) Galvanic protection of a steel member (1) by a zinc
More
Image
Published: 01 January 2001
Fig. 10 Schematic of coating architecture used to protect carbon-carbon for extended-life applications
More
1