Skip Nav Destination
Close Modal
Search Results for
proportional limits
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1334
Search Results for proportional limits
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2001
Fig. 5 Matrix cracks related to the proportional limit stress and onset of nonlinearity of the stress-strain curve; arrows indicate matrix cracks in 0°/90° laminate Nicalon fiber reinforced CAS glass-matrix composite. Source: Ref 4
More
Image
Published: 01 January 2000
Fig. 2 Typical tension stress-strain curve for ductile metal indicating yielding criteria. Point A, elastic limit; point A′, proportional limits; point B, yield strength or offset (0 to C) yield strength; 0, intersection of the stress-strain curve with the strain axis
More
Image
Published: 01 November 1995
Fig. 2 Typical stress-strain curve for an engineering plastic. Note that there is no true proportional limit.
More
Image
Published: 01 November 1995
Fig. 1 Typical stress-strain curve for an engineering metal. Note high degree of linearity below the proportional limit.
More
Image
Published: 01 January 2000
Fig. 11 Stress-strain curves showing straight lines corresponding to (a) Young's modulus between stress, P , below proportional limit and R , or preload; (b) tangent modulus at any stress, R ; and (c) chord modulus between any two stresses, P and R. Source: Ref 6
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003469
EISBN: 978-1-62708-195-5
... of Failure Mechanisms Fractography can reveal evidence of individual fracture mechanisms, as well as the overall fracture behavior shown in Fig. 3 and 4 . For example, the onset of nonlinearity (proportional limit stress) indicated in the stress-strain curve for the ceramic composite shown in Fig. 2...
Abstract
Interpretation of failures of ceramic-matrix composites, and in particular continuous fiber reinforced ceramic-matrix composites is complicated by the complex structure of the composite material. This article describes the failure characteristics and evidence of failure mechanisms of these composites, with illustrations.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003261
EISBN: 978-1-62708-176-4
... materials, there is a gradual transition from elastic to plastic behavior, and the point at which plastic deformation begins is difficult to define with precision. In tests of materials under uniaxial loading, three criteria for the initiation of yielding have been used: the elastic limit, the proportional...
Abstract
This article focuses on mechanical behavior of materials under conditions of uniaxial tension and compression. The emphasis is on mechanical behavior during the engineering tension test, which is used to provide basic design information on the strength of materials and as an acceptance test for the specification of materials. The article presents mathematical expressions for a flow curve of many metals in the region of uniform plastic deformation. It explains that the rate at which strain is applied to the tension specimen has an important influence on the stress-strain curve. The point of necking at maximum load can be obtained from the true stress-true strain curve by finding the point on the curve having a subtangent of unity. The article concludes with an overview of the ductility measurements performed by notch tensile and compression tests.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006544
EISBN: 978-1-62708-210-5
... properties compressive properties creep properties creep-rupture properties elastic limits elastic moduli fabrication fatigue properties fracture properties materials selection proportional limits sample testing shear properties stress-strain curves tensile properties test specimen design...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003007
EISBN: 978-1-62708-200-6
... difficult. Mechanical Stress Response A typical stress-strain curve for an engineering metal is shown in Fig. 1 . The salient features of metal behavior are that the slope of the stress-strain curve is a constant up to the proportional limit and is known as the elastic modulus, and that the elastic...
Abstract
Engineering plastics offer unique product benefits based on physical properties, or combinations of physical properties, that allow vastly improved product performance. Providing an overview of the general characteristics and the mechanical and environmental stress response of engineering plastics, this article discusses various factors, including thermal, mechanical and electrical properties, environmental factors, and material cost that are important in the selection of engineering plastics for specific applications.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003268
EISBN: 978-1-62708-176-4
... of deflection and corresponding bending moment of metallic strip or sheet subjected to continuous loading in bending. A bending stress-strain curve analogous to the stress-strain curve in tension is developed from the data. The modulus of elasticity is determined at stresses below the proportional limit...
Abstract
Bend tests are conducted to determine the ductility or strength of a material. This article discusses the different bend tests with emphasis on test methods, apparatuses, procedures, specimen preparation, and interpretation and reporting of results. The types of bend tests discussed are bending ductility tests, bending strength tests (ASTM E 855), bend tests as per EN 12384 and JIS 3130, and computer-aided bending tests. The three standard bending strength tests are the cantilever beam bend test, the three-point bend test, and the four-point bend test. European Standard EN 12384 specifies a bend test to determine the modulus of elasticity in bending. Japanese Industrial Standard JIS 3130 specifies two tests to determine the elastic limit of spring plate or strip: the repeated deflection spring test and the moment type spring test.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003264
EISBN: 978-1-62708-176-4
... phenomenon, and so his name is associated with it. Proportional Limit (PL) The proportional limit (PL) is a point in the elastic region where the linear relationship between stress and strain begins to break down. At some point in the stress-strain curve (PL in Fig. 2b ), linearity ceases, and small...
Abstract
THE TENSION TEST is one of the most commonly used tests for evaluating materials. The material characteristics obtained from tension tests are used for quality control in production, for ranking performance of structural materials, for evaluation of alloys, and for dealing with the static-strength requirements of design. This article describes the stress-strain behavior during a tension test and provides the definition of terms such as stress, force, strain, and elongation. It explains the tensile properties obtained from the test results: the tensile strength and yield strength, which includes offset yield strength, extension-under-load yield strength, and upper yield strength. The article concludes with a description of the general procedures for conducting the tension test based on ASTM standards and the variability of tensile properties.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0005689
EISBN: 978-1-62708-176-4
.... Rate of propagation of a embrittlement. compressive modulus. The ratio of compres- crack through a material due to statically or sive stress to compressive strain below the dynamically applied load. caustic embrittlement. See preferred term proportional limit. Theoretically equal to crack length (depth...
Abstract
This article is a compilation of terms related to mechanical testing and evaluation of metals, plastics, ceramics, and composites.
Image
Published: 01 November 2010
) along the direction of the propagation of the structure limited by the final grain size and (c) in a representative elementary volume pertinent to model interdendritic segregation, that is, with a typical length scale proportional to the secondary dendrite arm spacing, l 2 . Mass balances are developed
More
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005931
EISBN: 978-1-62708-166-5
... monitoring and control of motion and position of various mechanical components with the help of mechanical limit switches, proximity sensors, and distance- and position-measuring devices. Using inputs from both flow meters and sensors, such as thermocouples and oxygen sensors, flow measurement control...
Abstract
Heat treating furnaces require different control systems and integration for achieving optimum technical results and enabling safe operation. This article focuses on atmosphere furnaces, with some coverage on controls for vacuum furnaces. Heat treating operations require reliable monitoring and control of motion and position of various mechanical components with the help of mechanical limit switches, proximity sensors, and distance- and position-measuring devices. Using inputs from both flow meters and sensors, such as thermocouples and oxygen sensors, flow measurement control systems must be able to adjust the flow of gases for process optimization. The operator interface of a furnace-control system displays critical information such as the furnace temperature, atmosphere status, alarms, electronic chart recorders, recipe, and maintenance. A supervisory control and data-acquisition (SCADA) system is used to monitor, collect, and store data from multiple pieces of equipment.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005404
EISBN: 978-1-62708-196-2
... some limited ranges of deformation conditions and can be used to describe the deformation behavior of a variety of different engineering materials fairly accurately. However, in reality, it is difficult to maintain a constant structure parameter over a wide range of temperature and deformation...
Abstract
This article, to develop an understanding of the underlying mechanisms governing deformation at elevated temperatures, discusses the phenomenological effects resulting from temperature-induced thermodynamic and kinetic changes. It describes the deformation behavior of engineering materials using expressions known as constitutive equations that relate the dependence of stress, temperature, and microstructure on deformation. The article reviews the characteristics of creep deformation and mechanisms of creep, such as power-law creep, low temperature creep, power-law breakdown, diffusional creep, twinning during creep deformation, and deformation mechanism maps. It discusses the creep-strengthening mechanisms for most structural engineering components. The article provides a description of the microstructural modeling of creep in engineering alloys.
Image
Published: 30 November 2018
amount of aluminum ions, which have been focused at equidistant polarized centers across the anode, and an infinite amount of hydrogen ions, which flow to the cathodes, completing the circuit. Because of polarization, a highly ordered oxide structure is produced, with a central pore that is proportional
More
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005928
EISBN: 978-1-62708-166-5
... control can be time proportioned to provide tighter control characteristics. Controls can also be set up so electronic meters or adjustable valves are used to provide specific flow rates. Many electronic meters and mass flow controllers will take a specific setpoint and automatically control the limiting...
Abstract
The atmosphere within a furnace chamber is a basic factor in achieving the desired chemical reactions with metals during heat treating. This article presents the fundamentals of heat treating atmospheres, and describes two groups of atmosphere control, namely, furnace atmosphere control and supply atmosphere control. The two basic types of atmospheric supply systems are generated atmospheres and nitrogen-base atmospheres. The article provides a brief overview of the gas reactions associated with oxidation and carbon control to ensure either carburization, or to prevent decarburization. It demonstrates how the carbon potential control is achieved by controlling water vapor concentration, carbon dioxide concentration, or oxygen partial pressure. The article also describes the various devices and analyzers used to monitor sampled gas from furnace atmospheres, namely, chromatographs, oxygen probes, Orsat analyzers, infrared analyzers, dewpoint analyzers, and hot-wire analyzers. Finally, it discusses the advantages, disadvantages, and limitations of these analyzers.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... Property measured Limitations Strength/ductility testing Unidirectional tension Ultimate tensile strength Yield strength Proportional limit (curve) Ductility: percent reduction in area and percent elongation May be insufficient material for standard test specimen Anisotropic materials...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006554
EISBN: 978-1-62708-210-5
... properties compressive properties creep properties creep-rupture properties elastic limits elastic moduli fabrication fatigue properties fracture properties materials selection proportional limits sample testing shear properties stress-strain curves tensile properties test specimen design...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
1