Skip Nav Destination
Close Modal
Search Results for
proeutectoid cementite
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 75
Search Results for proeutectoid cementite
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 4 Three-dimensional reconstruction of proeutectoid cementite precipitates in an isothermally transformed Fe-13Mn-1.3C alloy. Arrow indicates precipitate selected from grain for imaging in Fig. 5 Source: Ref 3
More
Image
Published: 01 November 2010
Fig. 5 Three-dimensional reconstruction of proeutectoid cementite precipitates in an isothermally transformed Fe-13Mn-1.3%C alloy. Source: Ref 13
More
Image
in Physical Metallurgy Concepts in Interpretation of Microstructures
> Metallography and Microstructures
Published: 01 December 2004
Fig. 27 Isothermal transformation (IT) diagram for a hypereutectoid carbon steel with a composition of 1.2 wt% C (1.18C-0.19Si-0.25Mn, wt%). Proeutectoid cementite (c) forms first, starting below A 1 . This transformation region (γ + c) for proeutectoid cementite ceases near the nose
More
Image
Published: 01 August 2013
Fig. 19 Formation of (a) proeutectoid ferrite in hypoeutectoid steel and (b) proeutectoid cementite in hypereutectoid steel
More
Image
in Metallography and Microstructures of Carbon and Low-Alloy Steels[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 10 Microstructure of 1.2% C-Fe alloy showing cementite outlining the prior-austenite grain boundaries and cementite needles in the grains of pearlite. The grain-boundary cementite is called proeutectoid cementite. This microstructure represents a hypereutectoid steel. 4% picral etch
More
Image
Published: 01 August 2013
Fig. 21 Microstructure of 1.2%C-Fe alloy showing cementite outlining the prior-austenite grain boundaries and cementite needles in the grains of pearlite. The grain-boundary cementite is called proeutectoid cementite. This microstructure represents a hypereutectoid steel. 4% picral etch
More
Image
Published: 01 December 2004
Fig. 26 Microstructure of as-rolled Fe-1.31%C-0.35%Mn-0.25%Si high-carbon water-hardenable tool steel. (a) Etching with picral revealed the Widmanstätten intragranular cementite that precipitated as proeutectoid cementite before the eutectoid reaction, but the intergranular cementite
More
Image
Published: 01 December 2004
Fig. 47 Cementite in an as-hot-rolled Fe-1%C binary alloy revealed by tint etching with Beraha's sodium molybdate tint etch. The arrow points to proeutectoid cementite that precipitated in a prior-austenite grain boundary. The etch also colored the cementite in the pearlite. The specimen
More
Image
Published: 01 December 2004
Fig. 3 Typical optical micrograph of an isothermally transformed Fe-13Mn-1.3C alloy showing proeutectoid cementite precipitates. Source: Ref 3
More
Image
Published: 01 November 2010
Fig. 4 Typical optical micrograph of an isothermally transformed Fe-13Mn-1.3%C alloy showing proeutectoid cementite precipitates. Source: Ref 13
More
Image
Published: 27 April 2016
Fig. 10 (a) Pearlite nucleation. (b) Colony growth. (c) Deep-etched steel sample showing pearlite colony growth from a proeutectoid cementite plate. Source: Ref 8 as published in Ref 1
More
Image
Published: 01 December 2004
Fig. 6 (a) Pearlite nucleation. (b) Colony growth. (c) Deep-etched steel sample showing pearlite colony growth off of proeutectoid cementite plate. Source: (a) and (b) from Ref 4 , p 331, (c) from Ref 6
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001008
EISBN: 978-1-62708-161-0
... and the phase transformations that change the structure and properties at varying levels of carbon content. Microstructures described include pearlite, bainite, proeutectoid ferrite and cementite, ferrite-pearlite, and martensite. The article depicts some of the primary processing steps that result in ferrite...
Abstract
This article describes microstructures and microstructure-property relationships in steels. It emphasizes the correlation of microstructure and properties as a function of carbon content and processing in low-alloy steels. The article discusses the iron-carbon phase diagram and the phase transformations that change the structure and properties at varying levels of carbon content. Microstructures described include pearlite, bainite, proeutectoid ferrite and cementite, ferrite-pearlite, and martensite. The article depicts some of the primary processing steps that result in ferrite-pearlite microstructures. It shows the range of hardness levels which may be obtained by tempering at various temperatures as a function of the carbon content of the steel. To reduce the number of processing steps associated with producing quenched and tempered microstructures, new alloying approaches have been developed to produce high-strength microstructures directly during cooling after forging.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006228
EISBN: 978-1-62708-163-4
... Fig. 10 (a) Pearlite nucleation. (b) Colony growth. (c) Deep-etched steel sample showing pearlite colony growth from a proeutectoid cementite plate. Source: Ref 8 as published in Ref 1 Fig. 11 Growth of intergranular pearlite nodules (numbered light regions) into the austenite matrix...
Abstract
Eutectoid and peritectoid transformations are classified as solid-state invariant transformations. This article focuses primarily on the structures from eutectoid transformations with emphasis on the classic iron-carbon system of steel. It reviews peritectoid phase equilibria that are very common in several binary systems. The addition of substitutional alloying elements causes the eutectoid composition and temperature to shift in the iron-carbon system. The article graphically illustrates the effect of various substitutional alloying elements on the eutectoid transformation temperature and effective carbon content. The partitioning effect of substitutional alloying elements, such as chromium, manganese, and silicon, in pearlitic steel is also illustrated.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005819
EISBN: 978-1-62708-165-8
... steels, the ferrite that forms before the eutectoid reaction is termed proeutectoid ferrite ( Fig. 19a ), while the cementite that forms before the eutectoid reaction in hypereutectoid steels is termed proeutectoid cementite ( Fig. 19b ). Fig. 19 Formation of (a) proeutectoid ferrite...
Abstract
The heat treatment of steel is based on the physical metallurgical principles that relate to its processing, properties, and structure. The microstructures that result from the heat treatment of steel are composed of one or more phases in which the atoms of iron, carbon, and other elements in steel are associated. This article describes the phases of heat treated steel, and provides information on effect of temperature change and the size of carbon atoms relative to that of iron atoms during the heat treatment.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003763
EISBN: 978-1-62708-177-1
... austenite transforms to pearlite once the A 1 temperature at 727 °C (1341 °F) is crossed. The ferrite that forms is called proeutectoid ferrite because it forms before the eutectoid reaction (“pro” meaning before). On the other side of the diagram, cementite will form as proeutectoid cementite. All steels...
Abstract
This article describes the microstructure and metallographic practices used for medium- to high-carbon steels as well as for low-alloy steels. It explains the microstructural constituents of plain carbon and low-alloy steels, including ferrite, pearlite, and cementite. The article provides information on how to reveal the various constituents using proven metallographic procedures for both macrostructural and microstructural examination. Emphasis is placed on the specimen preparation procedures such as sectioning, mounting, grinding, and polishing. The article illustrates the use of proven etching techniques for plain carbon and low-alloy steels.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003760
EISBN: 978-1-62708-177-1
... of studies inspired by 3D observations. For example, subsequent to a 3D analysis of proeutectoid cementite ( Ref 3 ), Mangan et al. ( Ref 4 ) determined that the two different morphologies of Widmanstätten cementite precipitates, which were revealed by 3D analysis, correspond to the two known orientation...
Abstract
Three-dimensional microscopy can be used to reveal the shape, distribution, and connectivity of three-dimensional (3D) features that lie buried within an opaque material. This article discusses several experimental techniques that can be used to generate 3D images. These include serial sectioning, focused ion beam tomography, atom probe tomography, and X-ray microtomography. Nine case studies are presented that represent the work of the various research groups currently working on 3D microscopy using serial sectioning and illustrate the variants of the basic experimental techniques. The article also discusses the techniques for reconstruction and visualization of 3D microstructures with advanced computer software and hardware.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003723
EISBN: 978-1-62708-177-1
...) exceeds its solubility limit in a base metal (or so-called solvent). For example, cementite (Fe 3 C) is a second-phase constituent in carbon steel. Second-phase constituents form because, at some point, the lattice of the host metal cannot accommodate any more atoms of the alloying element. When an alloy...
Abstract
This article introduces basic physical metallurgy concepts that may be useful for understanding and interpreting variations in metallographic features and how processing affects microstructure. It presents some basic concepts in structure-property relationships. The article describes the use of equilibrium binary phase diagrams as a tool in the interpretation of microstructures. It reviews an account of the two types of solid-state phase transformations: isothermal and athermal. The article discusses isothermal transformation and continuous cooling transformation diagrams which are useful in determining the conditions for proper heat treatment (solid-state transformation) of metals and alloys. The influence of the mechanisms of phase nucleation and growth on the morphology, size, and distribution of grains and second phases is also described.
Image
in Physical Metallurgy Concepts in Interpretation of Microstructures
> Metallography and Microstructures
Published: 01 December 2004
Fig. 22 Temperature-composition regions indicating the morphological tendencies of proeutectoid ferrite and cementite from isothermal decomposition of large-grain (ASTM 0 to 1) and small-grain (ASTM 7 to 8) austenite. See also Fig. 23 for descriptions of GBA, grain-boundary allotriomorphs; W
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003246
EISBN: 978-1-62708-199-3
.... This excess cementite is referred to as “proeutectoid cementite.” A grain-boundary cementite network renders such steels quite brittle. The strength and hardness of ferrite-pearlite steels increase with increasing pearlite content and are further increased by reductions in the interlamellar spacing. Pure...
Abstract
This article is a pictorial representation of commonly observed microstructures in iron-base alloys (carbon and alloy steels, cast irons, tool steels, and stainless steels) that occur as a result of variations in chemical analysis and processing. It reviews a wide range of common and complex mixtures of constituents (single or combination of two phases) that are encountered in iron-base alloys and the complex structure that is observed in these microstructures. The single-phase constituents discussed in the article include austenite, ferrite, delta ferrite, cementite, various alloy carbides, graphite, martensite, and a variety of intermetallic phases, nitrides, and nonmetallic inclusions. The article further describes the two-phase constituents including, tempered martensite, pearlite, and bainite and nonmetallic inclusions in steel that consist of two or more phases.
1