1-20 of 151 Search Results for

processing of uranium alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001085
EISBN: 978-1-62708-162-7
...Abstract Abstract Uranium is a moderately strong and ductile metal that can be cast, formed, and welded by a variety of standard methods. This article presents an overview of the processing and properties of uranium and uranium alloys with a brief overview of the principal hazards...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003166
EISBN: 978-1-62708-199-3
... very high density materials: depleted uranium and tungsten and their alloys. applications depleted uranium design considerations health considerations mechanical properties metallurgy processing tungsten tungsten alloys uranium alloys very high density metals VERY HIGH DENSITY...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003828
EISBN: 978-1-62708-183-2
... scale of uranium oxides and oxides of the alloying elements ( Ref 36 , 66 , 67 , 68 , 69 ). Nonetheless, the high-temperature oxidation of uranium alloys is observed in hot processing of these metals and, of course, in conditions where the alloys are exposed in fires. The high-temperature oxidation...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006256
EISBN: 978-1-62708-169-6
...Abstract Abstract Heat treatment of depleted uranium (DU) alloys with 4.0 wt% or more molybdenum or equivalent is similar to that of dilute alloys. This article discusses the metallurgical characteristics and processing considerations of DU and its alloys, and describes the control of grain...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003780
EISBN: 978-1-62708-177-1
..., and can be heat treated to hardnesses ranging from approximately 92 HRB to 55 HRC. Metallography is a useful tool for quality assurance, failure analysis, and understanding the effects of processing on the properties of uranium and its alloys. Natural uranium consists of two primary isotopes: U 235...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002192
EISBN: 978-1-62708-188-7
..., the cutting time, tool wear, and fire danger are significantly decreased ( Ref 8 ). Tool Wear and Types of Tools From a machining standpoint, uranium and its alloys are generally tough, soft, and gummy (adherent), although some alloys can be quite hard, depending on the metallurgical processing ( Ref...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005711
EISBN: 978-1-62708-171-9
... uranium and plutonium alloys during fuel fabrication processing. Highly stable oxide ceramics such as Y 2 O 3 and Er 2 O 3 have been shown to have minimal reaction with the molten reactive metals and survive multiple melting operations, thereby outperforming thinner slurry-applied coatings. An example...
Book Chapter

By G. Keough
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005203
EISBN: 978-1-62708-187-0
... between segments of the crucible. Later, the Duriron Company further developed the process and, in particular, the crucible design to allow the slag-free melting of highly reactive metals and alloys in what is now referred to as the induction skull melting (ISM) furnace. Induction skull melting has...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003587
EISBN: 978-1-62708-182-5
... (LiF), beryllium fluoride (BeF 2 ), uranium tetrafluoride (UF 4 ), and thorium fluoride (ThF 4 ), that are not appreciably reduced by available structural metals and alloys whose components (iron, nickel, and chromium) can be in near-thermodynamic equilibrium with the salt. A continuing program...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001744
EISBN: 978-1-62708-178-8
... or nonnernstian) or involve chemical reactions, such as a follow-up reaction, coupled to the electron transfer. Many of the analytical methods of controlled-potential coulometry are based on such reactions; examples are the procedures for vanadium and uranium. Irreversible processes require a greater difference...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006228
EISBN: 978-1-62708-163-4
... in binary phase diagrams. Peritectoid transformations are similar to peritectic transformations, except that the initial phases are both solid. An example of a peritectoid transformation is provided by the formation of the intermetallic compound U 3 Si in uranium-silicon alloys. The relevant phase diagram...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003149
EISBN: 978-1-62708-199-3
... systems such as aluminum, copper, magnesium, refractory metal alloys, and titanium alloys as well as superalloys. Metal Processing and Fabrication Processing Zirconium and hafnium are produced from ore that generally is found in a heavy beach sand containing zircon, rutile, and ilmenite. Zircon...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001084
EISBN: 978-1-62708-162-7
... process, refining, and melting. It also discusses the primary and secondary fabrication of zirconium and hafnium and its alloys. The article talks about the metallurgy of zirconium and its alloys with emphasis on allotropic transformation, cold work and recrystallization, anisotropy and preferred...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001332
EISBN: 978-1-62708-173-3
..., such as copper or aluminum, would lie near the top of this band, whereas steels, nickel alloys, or titanium would lie in the middle. Uranium and ceramics, with very low thermal diffusivities, would lie near the bottom of the band. Fig. 4 Maximum weld travel velocity as a function of heat-source...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003734
EISBN: 978-1-62708-177-1
...<xref rid="a0003734-fn1" ref-type="fn">[1]</xref> Peritectoid transformations are similar to peritectic transformations, except that the initial phases are both solid. An example of a peritectoid transformation is provided by the formation of the intermetallic compound U 3 Si in uranium-silicon alloys ( Ref 21 ). The relevant phase...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006087
EISBN: 978-1-62708-175-7
... The production of iron, copper, tungsten, and molybdenum powders from their respective oxides are well-established commercial processes. Detailed process descriptions for these oxide-reduced powders can be found in the articles “Production of Powder Metallurgy Carbon and Low-Alloy Steels” , “Production...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003814
EISBN: 978-1-62708-183-2
... (the coatings become sacrificial anodes). In such cases, coating porosity is acceptable, and low-cost/rapid-deposition spray processes can be used. Second, dense coatings of metals and alloys with much higher corrosion resistance than steel (notably titanium and nickel-base) can be used, provided they are dense...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... (B, C) Wear resistance for tools, dies, etc. Effect much deeper than original implantation depth. Precise area treatment, excellent process control Ion plating, ARE RT-0.7 T m of coating. Best at elevated temperatures Moderate to good Ion plating: Al, other metals (few alloys) ARE: TiN...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... reaction embrittlement hydrogen-induced blistering internal hydrogen internal reversible hydrogen embrittlement nickel-base alloys refractory metals stainless steels susceptibility titanium titanium alloys transition metals HYDROGEN DAMAGE is a term used to designate a number of processes...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... reactions of hydrogen with matrix or alloy elements form high-pressure pockets of gases other than molecular hydrogen. Cracking from hydride formation Transition, rare earth, alkaline-earth metals, and their alloys (includes titanium, tantalum, zirconium, uranium, and thorium) Brittle hydrides often...