Skip Nav Destination
Close Modal
Search Results for
pressure testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2159 Search Results for
pressure testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003328
EISBN: 978-1-62708-176-4
... under cyclic loading. Full-scale testing facilities and the typical test results required for various applications are discussed. The article also presents information on the transferability of mechanical properties of materials. pressure vessels piping tubing fracture mechanics longitudinal...
Abstract
This article provides an overview of the safety aspects and integrity concept for pressure vessels, piping, and tubing. It focuses on the fracture mechanics approaches used to validate components with longitudinal cracks and circumferential cracks and to analyze crack growth behavior under cyclic loading. Full-scale testing facilities and the typical test results required for various applications are discussed. The article also presents information on the transferability of mechanical properties of materials.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003296
EISBN: 978-1-62708-176-4
... when using a tensile Hopkinson bar in terms of loading technique, sample design, and stress-state stability, are discussed. high-strain-rate stress-strain response sample design stress-state stability split-Hopkinson pressure bar testing data reduction wave dispersion sample preparation...
Abstract
This article describes the techniques involved in measuring the high-strain-rate stress-strain response of materials using a split-Hopkinson pressure bar (SHPB). It focuses on the generalized techniques applicable to all SHPBs, whether compressive, tensile, or torsion. The article discusses the methods of collecting and analyzing compressive high-rate mechanical property data. A review of the critical experimental variables that must be controlled to yield valid and reproducible high-strain-rate stress-strain data is also included. Comparisons and contrasts to the differences invoked when using a tensile Hopkinson bar in terms of loading technique, sample design, and stress-state stability, are discussed.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003298
EISBN: 978-1-62708-176-4
... Abstract This article addresses the specialized aspects required to accurately quantify the behavior of soft materials, including polymers and polymeric composites, using the split-Hopkinson pressure bar (SHPB). It details some of the specialized SHPB techniques that facilitate testing soft...
Abstract
This article addresses the specialized aspects required to accurately quantify the behavior of soft materials, including polymers and polymeric composites, using the split-Hopkinson pressure bar (SHPB). It details some of the specialized SHPB techniques that facilitate testing soft materials. These techniques include the data-reduction techniques and assumptions required to use polymer pressure bars, the importance of sample-size considerations to polymer testing, and temperature-control methodologies to measure the high-strain-rate uniaxial stress response of polymers and other soft materials.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003299
EISBN: 978-1-62708-176-4
... Abstract Split-Hopkinson pressure bar (SHPB) testing is traditionally used for determining the plastic properties of metals (which are softer than the pressure bar material) at high strain rates. However, the use of this method for testing ceramic has various limitations. This article provides...
Abstract
Split-Hopkinson pressure bar (SHPB) testing is traditionally used for determining the plastic properties of metals (which are softer than the pressure bar material) at high strain rates. However, the use of this method for testing ceramic has various limitations. This article provides a discussion on the operational principle of the traditional SHPB technique and the relevant assumptions in the derivation of the stress-strain relationship. It describes the inherent limitations on the validity of these assumptions in testing ceramics and discusses the necessary modifications in SHPB design and test procedure for evaluating high-strength brittle ceramics. The article includes information on the maximum strain rate that can be obtained in ceramics using an SHPB and the necessity of incident pulse shaping. It also reviews the specimen design considerations, interpretation of experimental results obtained from SHPB testing of ceramics, and effectiveness of the proposed modifications.
Image
Published: 01 January 2003
Fig. 26 High-temperature, high-pressure test vessel for slow strain rate testing. Source: Ref 140
More
Image
Published: 01 December 2008
Fig. 15 Effect of pressure on the appearance of copper alloy reduced-pressure test samples containing the same amount of gas. (a) Pressure of 7 kPa (55 torr) results in surface shrinkage. (b) At 6.5 kPa (50 torr), a single bubble forms. (c) Boiling and porosity occur at 6 kPa (45 torr).
More
Image
Published: 01 December 2008
Fig. 12 Effect of pressure on the appearance of copper alloy reduced-pressure test samples containing the same amount of gas. (a) Pressure of 7 kPa (55 torr) results in surface shrinkage. (b) At 6.5 kPa (50 torr), a single bubble forms. (c) Boiling and porosity occur at 6 kPa (45 torr).
More
Image
Published: 01 December 2008
Fig. 16 Schematic of the reduced-pressure test apparatus used to assess amounts of dissolved gas in copper alloys
More
Image
Published: 01 December 2008
Fig. 16 Reduced pressure test apparatus. 1, vacuum chamber; 2, vacuum gage; 3, pressure regulator; 4, vacuum pump
More
Image
Published: 01 December 2008
Fig. 13 Schematic of the reduced-pressure test apparatus used to assess amounts of dissolved gas in copper alloys
More
Image
Published: 01 January 2000
Fig. 45 Split-Hopkinson pressure bar testing to determine the interlaminar shear properties of composites. (a) Optimum design of a single lap specimen. (b) Arrangement of the Hopkinson loading bars.
More
Image
Published: 01 January 2000
Fig. 46 Modified single-lap specimen for Hopkinson pressure bar testing of composites. (a) Specimen dimensions (in millimeters) and ply lay-up arrangement. (b) Arrangement of loading bars.
More
Image
Published: 01 January 2000
Fig. 6 Pressure-shear high-strain-rate testing. (a) Test configuration. (b) Lagrangian t-X diagram for pressure-shear high-strain-rate recovery experiment. Source: Ref 18 , 19
More
Image
Published: 01 January 2000
Fig. 7 Pressure-shear wave propagation testing. (a) Test configuration. (b) Lagrangian t-X diagram for pressure-shear wave propagation recovery experiment. Source: Ref 18 , 19
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005340
EISBN: 978-1-62708-187-0
... analysis, pressure filter tests, electric resistivity tests, reduced-pressure test, and ultrasonic technique. Detection methods based on the certain principles and the types of impurities in chemical analysis are discussed. aluminum alloys qualitative test semiquantitative test quantitative tests...
Abstract
Several qualitative, semiquantitative, and quantitative tests are available to estimate and control metal cleanliness, particularly inclusion concentration of aluminum alloys. This article provides a description of a few of the metal cleanliness assessment techniques, such as chemical analysis, pressure filter tests, electric resistivity tests, reduced-pressure test, and ultrasonic technique. Detection methods based on the certain principles and the types of impurities in chemical analysis are discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003243
EISBN: 978-1-62708-199-3
... information on the cantilever beam test, wedge-opening load test, contoured double-cantilever beam test, three-point and four-point bend tests, rising step-load test, disk-pressure test, slow strain-rate tensile test, and potentiostatic slow strain-rate tensile test for hydrogen embrittlement. constant...
Abstract
Stress-corrosion cracking (SCC) occurs under service conditions, which can result, often without any prior warning, in catastrophic failure. Hydrogen embrittlement is distinguished from stress-corrosion cracking generally by the interactions of the specimens with applied currents. To determine the susceptibility of alloys to SCC and hydrogen embrittlement, several types of testing are available. This article describes the constant extension testing, constant load testing, constant strain-rate testing for smooth specimens and precracked or notched specimens of SCC. It provides information on the cantilever beam test, wedge-opening load test, contoured double-cantilever beam test, three-point and four-point bend tests, rising step-load test, disk-pressure test, slow strain-rate tensile test, and potentiostatic slow strain-rate tensile test for hydrogen embrittlement.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005355
EISBN: 978-1-62708-187-0
... inspection, pressure testing, radiographic inspection, magnetic particle inspection, and ultrasonic inspection. castings blast cleaning cleaning finishing flame cutting grinding radiographic inspection inspection liquid penetrant inspection magnetic particle inspection ultrasonic inspection...
Abstract
After solidification and cooling, further processing and finishing of the castings are required. This article describes the general operations of shakeout, grinding, cleaning, and inspection of castings, with particular emphasis on automation technology. It illustrates the vertical core knockout machine and the A-frame core knockout machine and lists the advantages and disadvantages of these machines. The article describes the general factors in automated or manual gate removal process. It concludes with discussion on the various types of inspection, such as the liquid penetrant inspection, pressure testing, radiographic inspection, magnetic particle inspection, and ultrasonic inspection.
Image
Published: 01 January 2006
Fig. 2 Schematic illustration of the bulge test. p, pressure; R, radius of curvature; t, thickness. Source: Ref 17
More
Image
Published: 01 January 2003
Fig. 18 Untested low-velocity atmospheric pressure burner rig test specimens. (a) Uncoated nickel-base alloys. (b) Coated superalloys
More
Image
Published: 01 January 2003
Fig. 19 Low-velocity atmospheric pressure burner rig test results at 900 °C (1650 °F). The nickel-base alloy (a) and the CoCrAlY-type coating (b) were both attacked by type I hot corrosion. Depletion of an alloy constituent or coating phase was found along a broad front, with an associated
More
1