Skip Nav Destination
Close Modal
Search Results for
prepreg test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 124 Search Results for
prepreg test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003432
EISBN: 978-1-62708-195-5
... to control the rate of reaction. The article describes the component material tests, mixed resin system tests, and prepreg tests for the resin system. These tests include high-performance liquid chromatography, infrared spectroscopy, and gel permeation chromatography. The article contains a table that lists...
Abstract
This article focuses on epoxy because this resin category has widespread use and because it is tested using quality control measures typical of most resin systems. It explains that a typical resin system will consist of one or more epoxy resins, a curing agent, and a catalyst to control the rate of reaction. The article describes the component material tests, mixed resin system tests, and prepreg tests for the resin system. These tests include high-performance liquid chromatography, infrared spectroscopy, and gel permeation chromatography. The article contains a table that lists typical resin and prepreg property tests.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009083
EISBN: 978-1-62708-177-1
... other prepreg systems require the use of a film adhesive to provide the necessary bond. Some common tests performed on honeycomb composites are climbing drum peel and flatwise tensile tests to characterize the skin-to-core bond strength. After testing the composites, optical microscopy can be employed...
Abstract
Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This article illustrates an area of a honeycomb-cored sandwich structure composite cross section that is viewed using transmitted polarized light. This area shows the differences in the constituents and resin intermingling. The article discusses the factors that govern the honeycomb core movement and honeycomb core crush, with illustrations. Some common tests performed on honeycomb composites to characterize the skin-to-core bond strength are the climbing drum peel and flatwise tensile tests. The article concludes with a description on the reasons for core failure, which are analyzed after these tests.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003441
EISBN: 978-1-62708-195-5
... and cured thermoset-matrix resins and prepregs. constituent materials chemical test physical test mechanical test reinforcement fibers reinforcement fabrics thermoset resin matrices thermoplastic resin matrices prepregs A COMPOSITE is composed of some form of reinforcement combined...
Abstract
This article describes the most significant tests to characterize the properties of constituent materials. It discusses the chemical, physical, and mechanical tests for determining the properties of reinforcement fibers and fabrics. The article provides information on some of the basic materials used for thermoset and thermoplastic resin matrices. It reviews the identification of the individual characteristics of thermoset and thermoplastic resin along with the test methods normally used for their determination. The article contains a table that lists properties and tests for uncured and cured thermoset-matrix resins and prepregs.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000629
EISBN: 978-1-62708-181-8
... nozzles, and tension, flexural, compressive, and shear loadings. carbon-epoxy composites composite prepreg fractograph resin-matrix composites Fig. 1294 Fracture surface of a Fiberite 934 epoxy resin specimen that failed in tension. The specimen was tested at 25 °C (77 °F) in the dry...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of a type of resin-matrix composites, carbon-epoxy composites. The fractographs illustrate the fracture modes found in composite prepregs, composite panels, solid rocket motor nozzles, and tension, flexural, compressive, and shear loadings.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003360
EISBN: 978-1-62708-195-5
.... However, preplied prepregs are typically more costly than unidirectional prepregs because of the additional work necessary to ply the tape. Multioriented prepreg performance can be accurately predicted from test data that have been generated on these configurations. Tables 5 and 6 show typical...
Abstract
This article describes the types of fabrics and preforms used in the manufacture of advanced composites and related selection, design, manufacturing, and performance considerations. The types of fabrics and preforms include unidirectional and two-directional fabrics; multidirectionally reinforced fabrics; hybrid fabrics; woven fabric prepregs; unidirectional and multidirectional tape prepregs; and the prepreg tow. The article discusses three major categories of tape manufacturing processes, namely, the hand lay-up, machine-cut patterns that are laid up by hand, and the automatic machine lay-up. It provides a description of the two classes of prepregs. These include those that are suitable for high-performance applications and suitable for lower-performance molding compounds.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003045
EISBN: 978-1-62708-200-6
... culminated in standard industry reference publications of testing procedures, such as those of the American Society for Testing and Materials and the American Society of Mechanical Engineers. These organizations are engaged in the documentation of methods of testing or referencing the specific properties...
Abstract
Ultrasonic inspection is a nondestructive technique that is useful in both quality control and research applications for flaw detection in fiber-reinforced composite materials. This article describes ultrasonic nondestructive analysis by outlining its three basic types of scans. It reviews the important quality control techniques used during the manufacture of composite components by analyzing tooling control, material control, pattern orientation control, and in-process control.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009078
EISBN: 978-1-62708-177-1
... ( Ref 7 ). It is commonly found that water in the formulation is the volatile compound that produces voids in the composite part. It has been shown that as-received epoxy resins contain between 0.3 and 0.7 wt% water ( Ref 8 ). Furthermore, many prepreg-matrix formulations rapidly absorb moisture from...
Abstract
Voids in fiber-reinforced composite materials are areas that are absent of the composite components: matrix (resin) and fibers. Voids have many causes but generally can be categorized as voids due to volatiles or as voids that result from entrapped air. This article describes the analysis of various types of voids. It reviews techniques for analysis of voids at ply-drops, voids due to high fiber packing, and voids that occur in honeycomb core composites. The final section of the article discusses void documentation through the use of nondestructive inspection techniques and density/specific gravity measurement methods.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003434
EISBN: 978-1-62708-195-5
... property testing must be laid up into panels and mechanically tested. Typical tests include compression, tension, and short-beam shear strengths. Unused rolls, precut kits, partially laid-up parts, or partially used rolls of prepreg or adhesive materials are stored in sealed moistureproof bags...
Abstract
In-process inspection during composite material lay-up is essential if the structural, dimensional, and environmental performance designed into a part is to be consistently achieved. This article discusses the requirements to be met by the facilities and equipment to produce high-quality composites. It reviews the procedures that are allowed and prohibited in controlled-contamination areas of lay-up. The article emphasizes significant areas, such as material control and lay-up process, in which quality-control personnel can be effective in preventing production problems. It concludes with a discussion on automated tape laying and fiber placement, as well as the numerically aided lay-up process.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003033
EISBN: 978-1-62708-200-6
.... It describes the functions, types, and chemical composition of fiber sizing agents. The article discusses the styles, properties, applications, and weaving methods of unidirectional, two-directional and multidirectionally reinforced fabrics. The article also reviews the use of prepreg resins in aerospace...
Abstract
This article addresses the types, properties, forms, and applications of fibers that are available for use in fiber-reinforced polymeric matrix composites, including glass, graphite, carbon, aramid, boron, silicon carbide, ceramic, continuous oxide and discontinuous oxide fibers. It describes the functions, types, and chemical composition of fiber sizing agents. The article discusses the styles, properties, applications, and weaving methods of unidirectional, two-directional and multidirectionally reinforced fabrics. The article also reviews the use of prepreg resins in aerospace and lower performance applications.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003392
EISBN: 978-1-62708-195-5
... methods: Wet lay-up, prepreg lay-up, fiber placement, tape lay-up, pultrusion, resin transfer molding (RTM), vacuum- assisted resin transfer molding, filament winding, compression molding, injection molding, centrifugal casting Processing equipment: Vacuum bagging, molds, ovens, autoclaves, presses...
Abstract
This article describes common design criteria and identifies the design considerations that have a significant effect on the end product. The design criteria include cost, size, mechanical properties, repeatability and precision of parts, damage tolerance and durability, and environmental constraints.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003416
EISBN: 978-1-62708-195-5
... ) and good compression strength after impact testing. Delivery Systems The three different impregnation methods commonly used are preimpregnated roving (prepreg), wet rerolled, and wet winding. Prepregs Preimpregnated rovings offer excellent quality control and reproducibility in resin content...
Abstract
Filament winding is a process for fabricating a composite structure in which continuous reinforcements, either previously impregnated with a matrix material or impregnated during winding, is placed over a rotating form or mandrel in a prescribed way to meet certain stress conditions. This article describes the advancements in filament winding and lists the advantages and disadvantages of filament winding. It discusses the effects of fiber tension in filament winding and the selection of fibers, resins, and materials for filament winding. The article emphasizes the three basic filament-winding patterns, such as helical, polar, and hoop. It presents information on the applications of filament winding, including rocket motors, natural gas vehicle (NGV) tanks, and sporting goods. The article presents recommendations for the basic design guidelines for filament-winding design/manufacturing process and concludes with a discussion on fabrication recommendations.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003366
EISBN: 978-1-62708-195-5
... ( Ref 5 ). Interestingly, with all these superior properties, phenolics are relatively inexpensive. Fig. 1 Smoke optical density (ASTM E 662) comparison of selected resins Flame spread index and smoke density comparison of thermosetting resins (ASTM E 84 tunnel test) Table 1 Flame...
Abstract
This article describes the chemistry of phenolic resins and reviews their characteristics and properties for various composites fabrication processes. The fabrication processes include solution/hot-melt process, pultrusion, vacuum infusion, filament winding, sheet molding, and hand lay-up. The article illustrates the manufacturing process of phenolic honeycomb and provides information on the applications of phenolic composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003407
EISBN: 978-1-62708-195-5
... and understood by the laminating team. This includes prior testing of compatibility of release systems and resins. During the lamination, the humidity is monitored and controlled, if possible. All rolls of prepreg are recorded as used, so that traceability, weight, and waste control can be tracked. Quality...
Abstract
This article focuses on the design process, materials, and manufacturing techniques for one-off and low-volume production sailing craft. These include racing yachts of typically 10-20 m length for short coastal events, 20-25 m ocean racers, 24 m America's Cup racing craft, multihull racers of 35 m or more, and large luxury cruising craft. The article discusses the tooling, laminating practice, curing, mold removal, and quality control, for manufacturing hulls, decks, masts, and appendages using composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003476
EISBN: 978-1-62708-195-5
... polymerization of monomer reactants (PMR) polyimides at the National Aeronautics and Space Administration (NASA) Lewis (now NASA Glenn) Research Center (Ref 1 , 2 , and 3 ) and their commercialization by prepreg suppliers, the fiber-reinforced PMR polyimide based on PMR-15 has found increased acceptance...
Abstract
High-temperature-resistant polymers are used in aerospace, electronic, and other applications that demand outstanding elevated-temperature physical and mechanical properties. This article discusses the general characteristics of condensation-type polyimides and polymerization of monomer reactants (PMR) polyimides. It provides information on the applications of PMR-15 with illustrations.
Image
Published: 01 January 1987
of prepreg tape and were autoclave cured 175 °C (350 °F) according to the manufacturer's recommendations. Specimens were then end-tabbed and cut in accordance with the ASTM D3039. The 0° and 90° tensile specimens were tested in accordance with ASTM D3039, and the 0° flexural three-point-bend specimens were
More
Image
Published: 01 January 1987
× (The composite specimens shown in Fig. 1296 , 1297 , 1298 , 1299 , 1300 , 1301 , 1302 , 1303 , 1304 , 1305 , 1306 , 1307 , 1308 , 1309 , and 1310 all consisted of circa 1978 Thornel 300 fibers in Narmco 5208 epoxy resin. The composites were all fabricated by lay-up of prepreg tape and were
More
Image
Published: 01 January 1987
× (The composite specimens shown in Fig. 1296 , 1297 , 1298 , 1299 , 1300 , 1301 , 1302 , 1303 , 1304 , 1305 , 1306 , 1307 , 1308 , 1309 , and 1310 all consisted of circa 1978 Thornel 300 fibers in Narmco 5208 epoxy resin. The composites were all fabricated by lay-up of prepreg tape and were
More
Image
Published: 01 January 1987
fabricated by lay-up of prepreg tape and were autoclave cured 175 °C (350 °F) according to the manufacturer's recommendations. Specimens were then end-tabbed and cut in accordance with the ASTM D3039. The 0° and 90° tensile specimens were tested in accordance with ASTM D3039, and the 0° flexural three-point
More
Image
Published: 01 January 1987
Fig. 1300 Fracture surface of longitudinal (0°) carbon/epoxy specimen failed in flexure. The “wet” specimen was tested at 96 °C (205 °F) at a moisture content of 2 wt%. This fractograph shows a typical three-point-bend flexural failure surface. It illustrates the dramatic difference between
More
Image
Published: 01 January 1987
Fig. 1304 Fracture surface of a longitudinal (0°) carbon/epoxy specimen failed in tension. The specimen was tested in the dry condition (see below for explanation) at 25 °C (77 °F). The fibers are broken at many different levels; the fiber breaks are perpendicular to the fiber (and load
More
1