Skip Nav Destination
Close Modal
Search Results for
premium casting alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 175
Search Results for premium casting alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006554
EISBN: 978-1-62708-210-5
...-to-weight ratio justifies the higher alloy cost. Other applications, where strength at elevated temperatures is important, include turbine and supercharger impellers, rocker arms, connecting rods, and missile fins. Alloy 201.0 castings are commonly specified as premium castings, where impurities...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006555
EISBN: 978-1-62708-210-5
... are produced as premium engineered casting work, which are characterized by optimum concentrations of hardening elements and restrictively controlled impurities. Typical tensile properties of premium engineered casting are listed in Table 4 . Although any alloy can be produced in cast form with properties...
Abstract
The 206.0, A206.0, and B206.0 alloys (aluminum alloys 2xxx) are structural castings in the heat-treated temper for automotive and aerospace applications where high tensile and yield strengths with moderate elongations are needed. This datasheet provides information on key alloy metallurgy and fabrication characteristics of these 2xxx series alloys, as well as the effects of processing on their typical physical and mechanical properties.
Image
Published: 01 December 1998
Fig. 1 Elevated-temperature tensile strengths of various premium casting alloys suggested for elevated-temperature service. Duration of temperature exposure was 10,000 h.
More
Image
in Aluminum Foundry Products
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 14 Elevated-temperature tensile strengths of various premium casting alloys suggested for elevated-temperature service. Duration of temperature exposure was 10,000 h.
More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006573
EISBN: 978-1-62708-210-5
... Abstract Alloy 365.0 and A365.0 are developed near eutectic Al-Si die-casting alloys with additions of manganese to reduce die soldering. This datasheet provides information on key alloy metallurgy, processing effects on tensile properties, and fabrication characteristics of these 3xxx series...
Abstract
Alloy 365.0 and A365.0 are developed near eutectic Al-Si die-casting alloys with additions of manganese to reduce die soldering. This datasheet provides information on key alloy metallurgy, processing effects on tensile properties, and fabrication characteristics of these 3xxx series alloys.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006574
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloys 367.0 and 368.0 are high-performance, low-iron, die-casting alloys that rely on strontium for die soldering resistance. In these alloys, the lower iron content minimizes the formation of needle-like, Al-Fe-Si phases that can deteriorate strength, elongation...
Abstract
The aluminum alloys 367.0 and 368.0 are high-performance, low-iron, die-casting alloys that rely on strontium for die soldering resistance. In these alloys, the lower iron content minimizes the formation of needle-like, Al-Fe-Si phases that can deteriorate strength, elongation and fatigue behavior. This datasheet provides information on key alloy metallurgy, processing effects on tensile properties, and fabrication characteristics of these 3xxx series alloys.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006566
EISBN: 978-1-62708-210-5
... Abstract Alloy 354.0 was designed especially for premium engineered casting applications requiring high-tensile properties and elongation. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties...
Abstract
Alloy 354.0 was designed especially for premium engineered casting applications requiring high-tensile properties and elongation. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of this alloy.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006570
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of Al-Si-Mg high-strength premium casting alloy 359.0. aluminum alloy 359.0 aluminum-silicon...
Abstract
This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of Al-Si-Mg high-strength premium casting alloy 359.0.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
.... Alloys discussed include rotor alloys, commercial duralumin alloys, premium casting alloys, piston and elevated-temperature alloys, general-purpose alloys, magnesium alloys, aluminum-zinc-magnesium alloys, and bearing alloys. Six basic types of aluminum alloys developed for casting include aluminum...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article discusses the designation and classification of aluminum casting alloys based on their composition and the factors influencing alloy selection. Alloys discussed include rotor alloys, commercial duralumin alloys, premium casting alloys, piston and elevated-temperature alloys, general-purpose alloys, magnesium alloys, aluminum-zinc-magnesium alloys, and bearing alloys. Six basic types of aluminum alloys developed for casting include aluminum-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, and investment casting. In addition, the article discusses factors affecting the mechanical and physical properties, microstructural features that affect mechanical properties, the effects of alloying, and major applications of aluminum casting alloys.
Image
Published: 01 December 1998
Image
in Aluminum Foundry Products
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 16 100-h stress rupture of premium-quality aluminum alloy castings for elevated-temperature service
More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006572
EISBN: 978-1-62708-210-5
... Abstract Alloy 362.0, low-iron premium die-casting alloy, is made from recycled secondary metal scrap and was developed to have equivalent or better mechanical properties than Silafont-36 and/or Aural-2. This datasheet provides information on key alloy metallurgy, processing effects on physical...
Abstract
Alloy 362.0, low-iron premium die-casting alloy, is made from recycled secondary metal scrap and was developed to have equivalent or better mechanical properties than Silafont-36 and/or Aural-2. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications of this alloy.
Image
Published: 15 June 2019
Fig. 23 Notch-yield ratio as a function of temperature for aluminum alloy castings. (a) Sand castings, 2 xx .0, 5 xx .0, and 6 xx .0 alloys. (b) Sand castings, 3 xx .0 alloys. (c) Permanent mold castings. (d) Premium engineered castings
More
Image
Published: 15 June 2019
Fig. 19 Notch-yield ratio as a function of temperature for aluminum alloy castings. (a) Sand castings, 2 xx .0, 5 xx .0, and 6 xx .0 alloys. (b) Sand castings, 3 xx .0 alloys. (c) Permanent mold castings. (d) Premium engineered castings
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot isostatic pressing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003128
EISBN: 978-1-62708-199-3
... alloys. The article discusses the typical mechanical properties and mechanical-property limits for aluminum sand casting alloys, permanent mold casting and die casting alloys based on tests of separately cast specimens; and typical mechanical properties of premium-quality aluminum alloy castings...
Abstract
This article is a comprehensive collection of tables and curves that present data on the properties of aluminum castings. Data are presented to explain the physical properties such as ratings of castability, corrosion resistance, machinablity, and weldability for aluminum casting alloys. The article discusses the typical mechanical properties and mechanical-property limits for aluminum sand casting alloys, permanent mold casting and die casting alloys based on tests of separately cast specimens; and typical mechanical properties of premium-quality aluminum alloy castings and elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61.
Image
Published: 15 June 2019
Fig. 29 Plane-strain fracture toughness ( K Ic ) vs. tensile yield strength for selected aluminum alloy castings. SC, sand cast alloy; PE, premium engineered alloy
More
Image
Published: 15 June 2019
Fig. 27 Plane-strain fracture toughness ( K Ic ) vs. tensile yield strength for selected aluminum alloy castings. SC, sand cast alloy; PE, premium engineered alloy
More
Image
Published: 15 June 2019
Fig. 25 Relative rankings of notch toughness of aluminum casting alloys based on notch-yield ratio. (a) Sand castings. (b) Permanent mold castings. (c) Premium engineered castings
More
Image
Published: 15 June 2019
Fig. 27 Ratings of aluminum alloy castings based on unit propagation energy from tear tests. (a) Sand castings. (b) Permanent mold castings. (c) Premium engineered castings
More
1