Skip Nav Destination
Close Modal
Search Results for
preface
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9
Search Results for preface
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003324
EISBN: 978-1-62708-176-4
... standards describe so-called cleavage specimens and tests. These tests are a logical preface to the next section in this article, “Adhesive Fracture Mechanics Tests” . The reader familiar with cohesive fracture mechanics will see a similarity between the test specimen in ASTM D 1062 ( Fig. 6...
Abstract
Adhesive joints involve joining parts by bonding component parts together with an adhesive. This article provides a discussion on the purpose of testing adhesive joints and on the factors influencing mechanical strength of these joints. It describes the various tests used in the measurement of adhesive joint strength. These include qualitative tests, peel tests, lap shear tests, tensile tests, and adhesive fracture mechanics tests.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005433
EISBN: 978-1-62708-196-2
... the nanocrystalline-to-microcrystalline state. Source: Ref 44 References References 1. Hori S. , Tokizane M. , and Furushiro N. , Ed., Preface to asticity in Advanced Materials (ICSAM-91) , JSRS , Osaka, Japan , 1991 2. Sherby O.D. and Wadsworth J...
Abstract
This article presents a mechanical description of superplasticity and discusses constitutive equations that are essential for simulating superplastic forming processes, applicable to structural superplasticity. It presents the phenomenological constitutive equations of superplasticity and classical physical constitutive equations. The article also reviews the accommodation mechanisms that are divided into two major groups, namely, diffusional accommodation and accommodation by dislocations.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003007
EISBN: 978-1-62708-200-6
... The information in this article is largely taken from the following articles in Engineering Plastics, Volume 2, Engineered Materials Handbook, ASM International, 1988: J.N. Epel, J.M. Margolis, S. Newman, and R.B. Seymour, Preface, p v F.A. Fish, Design Approach for Engineering Plastics, p 74-81 M...
Abstract
Engineering plastics offer unique product benefits based on physical properties, or combinations of physical properties, that allow vastly improved product performance. Providing an overview of the general characteristics and the mechanical and environmental stress response of engineering plastics, this article discusses various factors, including thermal, mechanical and electrical properties, environmental factors, and material cost that are important in the selection of engineering plastics for specific applications.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001830
EISBN: 978-1-62708-181-8
... Sidérurgie Francaise [1966]; see translation by Thomas B. with Preface by Crussard C. , Éditions Métaux [1967] 52. Tipper C.F. and Sullivan A.M , Fracturing of Silicon-Ferrite Crystals , Trans. ASM , Vol 43 , 1951 , p 906 – 928 ; discussion, p 929 – 934 53...
Abstract
The purpose of fractography is to analyze fracture features and attempt to relate the topography of the fracture surface to the causes and/or basic mechanisms of fracture. This article reviews the historical development of fractography, from the early studies of fracture appearance dating back to the sixteenth century to the state-of-the-art work in electron fractography and quantitative fractography. It also describes the applications and limitations of scanning electron microscope and transmission electron microscope.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006872
EISBN: 978-1-62708-387-4
... de Recherches de la Sidérurgie Francaise [1966] ; see translation by B. Thomas with Preface by C. Crussard, Éditions Métaux [1967] 52. Tipper C.F. and Sullivan A.M , Fracturing of Silicon-Ferrite Crystals , Trans. ASM , Vol 43 , 1951 , p 906 – 928 ; discussion, p 929–934 53...
Abstract
This article reviews the historical development of fractography, from the early studies of fracture appearance dating back to the sixteenth century, and including the development of microfractography in the middle of the 20th century, to the current state-of-the-art work in electron fractography and quantitative fractography.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
Abstract
This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall erosion, and hot-tear cracks.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005413
EISBN: 978-1-62708-196-2
Abstract
This article focuses on the analyzing and modeling of stress-strain behavior of polycrystals of pure face-centered cubic (fcc) metals in the range of temperatures and strain rates where diffusion is not important. It presents a phenomenological description of stress-strain behavior and provides information on the physical background, alternative interpretations, and directions of research. The quantitative description of strain hardening of fcc polycrystals is provided. The article also discusses the modeling of stress-strain behavior in body-centered cubic metals, hexagonal metals, stage IV work hardening, and the various classes of single-phase alloys.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004208
EISBN: 978-1-62708-184-9
Abstract
This article provides information on biomedical aspects such as active biological responses and the chemical environment characterizing the internal physiological milieu, as well as electrochemical fundamentals needed for characterizing corrosion fatigue (CF) and stress-corrosion cracking (SCC). It discusses some of the mechanical and electrochemical phenomena related to the in vivo degradation of materials used for biomedical applications. These materials include stainless steels, cobalt and titanium-base alloy systems, and dental amalgam. The article addresses key issues related to the simulation of the in vivo environment, service conditions, and data interpretation. The factors influencing susceptibility to CF and SCC are reviewed. The article describes the testing methodology of CF and SCC. It also summarizes findings from laboratory testing, in vivo testing and retrieval studies related to CF and SCC.