1-20 of 709

Search Results for precipitator wires

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 10 Initial design of the loop on the top end of the precipitator wires. On the left are two loops, one with the 430 stainless steel ferrule removed. On the right is the broken wire inside the ferrule. 9× More
Image
Published: 01 January 2002
Fig. 12 An example of the failed new design for the precipitator wires. 5.5× More
Image
Published: 01 January 1997
Fig. 3 Precipitator wires from a basic oxygen furnace. (a) Original AISI 1008 carbon steel wire, wrapped around an insulator spool and fastened with a ferrule made from type 430 ferritic stainless steel. One ferrule has been removed. (b) Close-up view showing the fractured wire face inside More
Image
Published: 01 January 1997
Fig. 4 Replacement precipitator wires. (a) View of a type 304 replacement precipitator wire and the AISI 1010 tube bent at one end to place over the insulators. The arrows point to the two crimps used to fix the wire in the tube. (b) Close-up view of one of the crimps More
Image
Published: 01 January 1997
Fig. 5 Fractured replacement precipitator wires. (a) View of fractured type 304 precipitator wires. (b) Close-up view of one of the wires. Note the deformation at the inside diameter of the tube due to the motion of the wire. More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002458
EISBN: 978-1-62708-194-8
... analysis in materials selection and materials development/refinement. chipper knives failure analysis line pipe steels materials selection oxygen furnace precipitator wires MATERIALS SELECTION for parts or components usually occurs under two conditions. The first is when a new part...
Book Chapter

By George F. Vander Voort
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003520
EISBN: 978-1-62708-180-1
... involved precipitator wires in a wet scrubbing system at a basic oxygen furnace (BOF) shop. There were six sets of wet scrubbing systems, and each had four zones. The data on the wire failure frequency are presented in Table 1 . Basically, wires were hung from porcelain insulators between plates...
Image
Published: 01 January 1990
Fig. 13 Transverse cross section TEM photomicrograph of a portion of one filament of a Nb-46.5Ti composite wire. The light streaks are the α-Ti precipitates that are responsible for flux pinning through the core interaction. This wire has a large pinning force, with J c = 3150 A/mm 2 at 5 More
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006288
EISBN: 978-1-62708-169-6
... to precipitation treatment is necessary to obtain properties provided by this temper. In treating plate to T42 and T451 tempers; rolled or cold-finished wire, rod, and bar to T451 temper; and extruded rod, bar, shapes, and tubing to T4510 temper, parts are stress relieved by stretching to produce a specified...
Image
Published: 01 January 2002
content and no molybdenum from investigated implant wire. (c) Cross section of sensitized wire, with grain boundaries and deformation lines heavily attacked by etching because of chromium carbide precipitates. 180×. (d) Fracture surface under scanning electron microscope indicating intercrystalline More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006520
EISBN: 978-1-62708-207-5
... to solution treatment and prior to precipitation treatment to obtain properties provided by this temper. In treating plate to T42 and T451 tempers; rolled and cold-finished wire, rod, and bar to T451 temper; and extruded rod, bar, shapes, and tubing to T4510 temper, parts are stress relieved by stretching...
Book Chapter

By S.D. Washko, G. Aggen
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001046
EISBN: 978-1-62708-161-0
... Abstract This article discusses the composition, characteristics, and properties of the five groups of wrought stainless steels: martensitic stainless steels, ferritic stainless steels, austenitic stainless steels, duplex stainless steels, and precipitation-hardening stainless steels...
Book Chapter

By G. Fisher, T. Wolfe
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006391
EISBN: 978-1-62708-192-4
.../erosion and corrosion Tungsten carbide-based overlays Sizing screens, crusher cones Impact, abrasion Ground engaging tools High stress abrasion Metal alloy hardfacings contain multiple elements, which when heated will tend to form a high population of precipitate phases. These precipitate...
Book Chapter

By T. Scott Kreilick
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001110
EISBN: 978-1-62708-162-7
...-drawing techniques to final size, which is typically 0.5 to 1.0 mm (0.02 to 0.04 in.) in diameter. During the reduction process the wire is subjected to a series of intermediate heat treatments designed to precipitate the α-phase titanium of the alloy. The ratio of copper stabilizer to superconductor...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006716
EISBN: 978-1-62708-210-5
... °C (350 °F) and held at temperature for 8 h Rolled or cold-finished wire, rod, and bar are treated at 160 °C (320 °F) and held at temperature for 18 h to obtain T89 temper. Cold working after solution treating is necessary to obtain the desired properties in precipitation treating Rolled...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001412
EISBN: 978-1-62708-173-3
... Abstract This article commences with a brief description of the solidification characteristics and microstructures of martensitic precipitation hardening (PH) stainless steels. It reviews the welding parameters for types 17-4PH, 15-5PH, PH13-8 Mo, Custom 450, and Custom 455. The article...
Book Chapter

By D.J. Kotecki
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001434
EISBN: 978-1-62708-173-3
... of five major families of stainless steels: martensitic stainless steels, ferritic stainless steels, austenitic stainless steels, precipitation-hardening (PH) stainless steels, and duplex ferritic-austenitic stainless steels. Stainless steels of all types are weldable by virtually all welding processes...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006708
EISBN: 978-1-62708-210-5
..., and are available in all major product forms including extrusions, wire, rod, bar, forgings, sheet, and plate. Standard specifications for 6xxx series aluminum alloys and select specialty mill products are listed in Table 1 and Table 2 , respectively. The alloys generally are easy and inexpensive to fabricate...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006598
EISBN: 978-1-62708-210-5
..., and bar to T36 temper; and treating plate to T361 temper, cold working subsequent to solution treatment and prior to precipitation treatment is necessary to obtain properties provided by these tempers. Temper T351: This temper applies to plate and cold-finished rod, bar, and wire when stress relieved...
Book Chapter

Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
..., martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table that lists common medical device applications for stainless steels. The article discusses the physical metallurgy and physical and mechanical properties...