1-20 of 434

Search Results for precipitation-hardening martensitic stainless steels

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 1990
Fig. 23 Comparison of mechanical properties of precipitation-hardening martensitic stainless steels. (a) Tensile strength. (b) Yield strength. (c) Elongation. (d) Rupture strength. Heat treating schedules were as follows. Custom 450: 1 h at 1040 °C (1900 °F), water quench; then 4 h at 480 °C More
Book Chapter

Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001048
EISBN: 978-1-62708-161-0
.... It gives some typical compositions of wrought heat-resistant stainless steels, which are grouped into ferritic, martensitic, austenitic, and precipitation-hardening (PH) grades. Quenched and tempered martensitic stainless steels are essentially martensitic and harden when air cooled from the austenitizing...
Book Chapter

By Steven Bradley
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007032
EISBN: 978-1-62708-387-4
... environments. The five types of stainless steels are the austenitic, ferritic, duplex, martensitic, and precipitation- hardened alloys. Austenitic stainless steels such as Types 304 or 316 are the most widely used; they contain about 18% chromium and 8% nickel. These nonmagnetic alloys have a face-centered...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
... steels, whereas the higher-carbon martensitic stainless steels are among the most difficult metals to machine. Austenitic and precipitation-hardening stainless steels vary more widely in machining characteristics within each class than do the ferritic and martensitic grades. Most easily machined...
Book Chapter

Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005985
EISBN: 978-1-62708-168-9
... this action by its influence on reducing the solubility of carbon in the matrix. Thus, the tempering of the higher-alloy martensitic stainless steels can truly be considered a precipitation-hardening reaction. The higher-carbon, higher-chromium grades are typically stress-relieved only because the removal...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003767
EISBN: 978-1-62708-177-1
... examination microstructures stainless steel metallography stainless steel microstructures STAINLESS STEELS are complex alloys containing a minimum of 11% Cr plus other elements to produce ferritic, martensitic, austenitic, duplex, or precipitation-hardenable grades. Procedures used to prepare...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005961
EISBN: 978-1-62708-168-9
... 15-7 Mo, AM-350, Pyromet 350, AM-355, and Pyromet 355; austenitic PH stainless steel, A-286; cast PH stainless steels; and iron-nickel PH superalloys. annealing austenitic precipitation-hardenable stainless steel heat treatment iron-base superalloys martensitic precipitation-hardenable...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001412
EISBN: 978-1-62708-173-3
... Abstract This article commences with a brief description of the solidification characteristics and microstructures of martensitic precipitation hardening (PH) stainless steels. It reviews the welding parameters for types 17-4PH, 15-5PH, PH13-8 Mo, Custom 450, and Custom 455. The article...
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0006995
EISBN: 978-1-62708-450-5
... are hardened by the precipitation of vanadium carbides. Titanium Forms TiC and TiN precipitates. Helps to refine grain structure. Used in HSLA steels. Carbide stabilizer in stainless steel Niobium Forms precipitation hardening in HSLA steels. Carbide stabilizer in stainless steels Boron On a weight...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006566
EISBN: 978-1-62708-290-7
... chromium content to ensure the formation of a passivating layer. Stainless steels are subdivided into five major families based on the primary matrix phase: martensitic (group I), ferritic (group II), austenitic (group III), precipitation hardening (group IV), and duplex. Group I grades are martensitic...
Book Chapter

Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
..., martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table that lists common medical device applications for stainless steels. The article discusses the physical metallurgy and physical and mechanical properties...
Book Chapter

By Prasan K. Samal
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006067
EISBN: 978-1-62708-175-7
... Abstract Stainless steels are primarily alloys of iron and chromium. They are grouped into five families, primarily based on their microstructure: ferritic, austenitic, martensitic, duplex, and precipitation hardening. Three out of the five families of stainless steels, namely, austenitic...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003246
EISBN: 978-1-62708-199-3
... by light microscopy). The AISI type 304 austenitic weld metal contains delta ferrite, which prevents hot cracking. The 17-4 PH (precipitation-hardening) stainless steel contains delta ferrite stringers in a low-carbon martensitic matrix. The duplex stainless steel (as cast and annealed) contains austenite...
Book Chapter

By Vern Sutter, Robert J. Dybas
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001476
EISBN: 978-1-62708-173-3
.... Martensitic Stainless Steels Martensitic stainless steels (types 403, 410, 414, 420, and the 440 series) are weldable with adequate preheat and interpass temperature control ranging from 205 to 315 °C (400 to 600 °F). To restore mechanical properties and reduce the hardened HAZ, a postweld heat treatment...
Book Chapter

Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005644
EISBN: 978-1-62708-174-0
... to harden when cooled from high temperatures Martensitic stainless 440 … … … … Welding not recommended Ferritic stainless steels 200 (390) … … Anneal after welding 700–850 (1290–1560) Limited transformation to martensite via austenite can occur. Grain growth. Two factors reduce ductility...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003115
EISBN: 978-1-62708-199-3
... properties of five major stainless steel families, of which four are based on the crystallographic structure of the alloys, including martensitic, ferritic, austenitic, or duplex. The fifth is precipitation-hardenable alloys, based on the type of heat treatment used. The article further discusses the factors...
Book Chapter

By S. Lampman
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002403
EISBN: 978-1-62708-193-1
... Abstract This article summarizes the key mechanical characteristics of various types of stainless steel, including ferritic, austenitic, martensitic, precipitation hardening, and duplex steels. Particular emphasis is on fracture properties and corrosion fatigue. The article tabulates typical...
Book Chapter

By Ted Kosa, Ronald P. Ney, Sr.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002180
EISBN: 978-1-62708-188-7
... of Stainless Steels Stainless steels can be divided into five families. Four are based on the characteristic microstructure of the alloys in the family: ferritic, martensitic, austenitic, or duplex (austenitic plus ferritic). The fifth family, the precipitation-hardenable alloys, is based on the type...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003203
EISBN: 978-1-62708-199-3
... of different types of stainless steels such as austenitic, ferritic, duplex, martensitic, and precipitation-hardening, and on the heat treatment of superalloys and refractory metals. It discusses the recommended procedures for solution annealing, austenite conditioning, transformation cooling, and age...
Book Chapter

By S.D. Washko, G. Aggen
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001046
EISBN: 978-1-62708-161-0
... Abstract This article discusses the composition, characteristics, and properties of the five groups of wrought stainless steels: martensitic stainless steels, ferritic stainless steels, austenitic stainless steels, duplex stainless steels, and precipitation-hardening stainless steels...