Skip Nav Destination
Close Modal
Search Results for
precipitation hardening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1066
Search Results for precipitation hardening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001412
EISBN: 978-1-62708-173-3
... Abstract This article commences with a brief description of the solidification characteristics and microstructures of martensitic precipitation hardening (PH) stainless steels. It reviews the welding parameters for types 17-4PH, 15-5PH, PH13-8 Mo, Custom 450, and Custom 455. The article...
Abstract
This article commences with a brief description of the solidification characteristics and microstructures of martensitic precipitation hardening (PH) stainless steels. It reviews the welding parameters for types 17-4PH, 15-5PH, PH13-8 Mo, Custom 450, and Custom 455. The article describes the microstructural evolution and weld parameters associated with semiaustenitic PH steels. It discusses the weldability and welding recommendations for A-286 and JBK-75 austenitic PH stainless steels. The article also presents tables that list properties and heat treatments for the PH stainless steels.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000612
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of precipitation-hardening stainless steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the cup-and-cone tension-overload...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of precipitation-hardening stainless steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the cup-and-cone tension-overload fracture, low-cycle and high-cycle fatigue fracture, fracture surface, brittle intergranular fracture, hydrogen embrittlement, and intergranular stress-corrosion cracking of stainless steel components of these steels. The components include high-pressure compressor parts, springs, deflector yokes of aircraft main landing gears, and aircraft engine mount beams.
Image
Published: 01 January 2006
Fig. 10 Work-hardening behavior of four precipitation-hardening copper alloys in the solution-annealed condition. (a) Effect of cold work by rolling reduction on ultimate tensile strength. (b) Effect of cold work on yield strength. (c) Effect of cold work on elongation
More
Image
in Aluminum Mill and Engineered Wrought Products
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 11 Precipitation hardening curves for binary Al-Cu alloys quenched in water at 100 °C (212 °F) and aged at 150 °C (300 °F)
More
Image
in Physical Metallurgy Concepts in Interpretation of Microstructures
> Metallography and Microstructures
Published: 01 December 2004
Fig. 41 Isothermal transformation diagram with C-shaped precipitation-hardening response of an aluminum-lithium alloy (Al-2.7%Cu-1.6%Li). Source: Ref 13
More
Image
in Elevated-Temperature Properties of Stainless Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 23 Comparison of mechanical properties of precipitation-hardening martensitic stainless steels. (a) Tensile strength. (b) Yield strength. (c) Elongation. (d) Rupture strength. Heat treating schedules were as follows. Custom 450: 1 h at 1040 °C (1900 °F), water quench; then 4 h at 480 °C
More
Image
Published: 01 June 2016
Fig. 44 Precipitation hardening in aluminum-copper alloys. (a) Aluminum-copper phase diagram, showing the 5% Cu line. (b) General relation between age hardening and microstructure. Adapted from Ref 4
More
Image
Published: 01 June 2016
Fig. 18 Mechanisms of strengthening for precipitation hardening. (a) Dislocation cutting a particle. (b) Dislocation bowing around a precipitate based on Orowan’s mechanism of dispersion hardening. Source: Ref 48
More
Image
Published: 01 December 1998
Fig. 7 Precipitation hardening curves for binary Al-Cu alloys quenched in water at 100 °C (212 °F) and aged at 150 °C (300 °F)
More
Image
Published: 30 November 2018
Fig. 6 Mechanisms of strengthening for precipitation hardening. (a) Dislocation cutting a particle. (b) Dislocation bowing around a precipitate based on Orowan’s mechanism of dispersion hardening. Source: Ref 7
More
Image
in 356.0 and A356.0[1]: Al-Si-Mg High-Strength Casting Alloys
> Properties and Selection of Aluminum Alloys
Published: 15 June 2019
Fig. 3 Comparison of the precipitation-hardening characteristics of 356.0-T4 sand and permanent mold castings
More
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005961
EISBN: 978-1-62708-168-9
... Abstract Precipitation hardening is a hardening mechanism found in various steels and alloy systems, such as nickel-, cobalt-, titanium-, copper-, and iron-base alloys. This article provides a brief description of precipitation hardening process, furnace equipment, surface-related problems...
Abstract
Precipitation hardening is a hardening mechanism found in various steels and alloy systems, such as nickel-, cobalt-, titanium-, copper-, and iron-base alloys. This article provides a brief description of precipitation hardening process, furnace equipment, surface-related problems, and protective atmospheres used in heat treatment of iron-base precipitation-hardenable (PH) superalloys. It focuses on various factors to be considered in heat treating of PH stainless steels: cleaning prior to heat treatment, furnace atmospheres, time-temperature cycles, variations in cycles, and scale removal after heat treatment. The article describes the mechanical properties, solution treatment, and aging treatment for many martensitic PH alloys, including: Alloy 17-4 PH, Alloy 13-8 Mo, Alloy 15-5 PH, Custom 450, and Custom 455; as well as semiaustenitic PH stainless steels such as Alloy 17-7 PH, Alloy PH 15-7 Mo, AM-350, Pyromet 350, AM-355, and Pyromet 355; austenitic PH stainless steel, A-286; cast PH stainless steels; and iron-nickel PH superalloys.
Image
Published: 15 January 2021
Fig. 7 Precipitate in a precipitation-hardened (PH) steel fracture surface, labeled as Spectrum 1, and energy-dispersive spectroscopy spectrum from the corresponding point showing nearby steel constituents (iron, chromium, nickel, and copper) that are detected. According to the quantitative
More
Image
Published: 01 June 2016
Image
Published: 15 January 2021
Fig. 6 Scanning electron microscope image of 15-5 precipitation-hardened (PH) steel debris with gold plating that had transferred onto the metal surface during the failure event. In secondary electron imaging, topographical differences in the gold plating such as wrinkling are more evident
More
Image
Published: 01 August 2013
Fig. 10 Limits of carbide precipitation for different case-hardening steels (calculated according to Ref 9 )
More
Image
Published: 01 December 2009
Fig. 11 Influence of cobalt on the precipitation age-hardening kinetics of an Fe-18Ni-Co-4Mo system at 482 °C simulated using the artificial neural-network model. HV, Vickers hardness
More
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
.... It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging...
Abstract
This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron, zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging of the as-quenched supersaturated solid solution. The article briefly discusses these processes of precipitation hardening. It also reviews precipitation in various alloy systems, including 2xxx, 6xxx, 7xxx, aluminum-lithium, and Al-Mg-Li systems.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001425
EISBN: 978-1-62708-173-3
... Abstract The process of making assemblies of solid-solution and precipitation hardening groups of alloys and superalloys often requires welding of dissimilar metals, welding of diffusion-bonded materials, and sometimes weld overlay cladding and even thermal spraying that in turn requires...
Abstract
The process of making assemblies of solid-solution and precipitation hardening groups of alloys and superalloys often requires welding of dissimilar metals, welding of diffusion-bonded materials, and sometimes weld overlay cladding and even thermal spraying that in turn requires special knowledge and treatments developed specifically for each material. This article emphasizes the special metallurgical welding considerations for welding solid-solution and precipitation hardening nickel alloys, cobalt alloys, and superalloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003124
EISBN: 978-1-62708-199-3
... Abstract The physical and mechanical properties of aluminum alloy can be improved by strengthening mechanisms such as strain hardening used for non-heat treatable aluminum alloy and precipitation hardening used for heat treatable aluminum alloy. This article focuses on the effect...
Abstract
The physical and mechanical properties of aluminum alloy can be improved by strengthening mechanisms such as strain hardening used for non-heat treatable aluminum alloy and precipitation hardening used for heat treatable aluminum alloy. This article focuses on the effect of strengthening mechanisms on the physical and mechanical properties of non-heat treatable and heat treatable aluminum alloys. It describes the use of the aluminum alloy phase diagram in determining the melting temperature, solidification path, equilibrium phases, and explains the effect of alloying element in phase formation.
1