Skip Nav Destination
Close Modal
By
Rob Goldstein, William Stuehr, Micah Black
By
Scott Larrabee, Andrew Bernhard
By
Egbert Baake, Bernard Nacke
By
Justin Mortimer, Andrew Bernhard, Carlos Rodriguez, Gregg Warner, Tim Williams
By
Erwin Dötsch, Bernard Nacke
By
Doug Brown, Valery Rudnev, Peter Dickson
By
R. Gene Stout
Search Results for
power-supply leads
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 927
Search Results for power-supply leads
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Design and Fabrication of Inductors for Induction Heat Treating
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005839
EISBN: 978-1-62708-167-2
... a part and presenting it to the inductor during the initial inductor design. The article provides information on coil leads/busswork and contacts that mechanically and electrically connect the induction coil head to the power supply. It concludes with a discussion on flux and oxide removal, leak and flow...
Abstract
This article provides information on single-shot and scanning, the two types of induction heat treating processes that are based on whether the induction coil is moving relative to the part during the heating process. It describes the effect of the frequency of induction heating current on the induction coil and process design, and the control of heating in different areas of the inductor part. The article reviews three main tools for adjustment of coil design and fabrication: coupling gap, coil copper profile, and magnetic flux controllers. It examines the method of holding a part and presenting it to the inductor during the initial inductor design. The article provides information on coil leads/busswork and contacts that mechanically and electrically connect the induction coil head to the power supply. It concludes with a discussion on flux and oxide removal, leak and flow checking, silver plating, and electrical parameter measurement.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005843
EISBN: 978-1-62708-167-2
... matching process, including the inductance of transformers, coil and power supply leads, adjacent structures that may absorb energy, and so forth. To facilitate the process of matching the coil and part combination to the power supply, variable ratio transformers, capacitors, and sometimes inductors...
Abstract
This article provides a discussion on transformers and reactors for induction heating. It presents information on the initial considerations in the selection process and the demands of power supply and load circuits. The article describes the types of transformers and reactors used in induction heating and maintenance operations. It also provides a discussion on load matching covering the following topics: initial considerations in the load-matching process, understanding the load circuit and the power supply circuit, selecting the desired operating point, adjusting the value of components, and testing the setup.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005924
EISBN: 978-1-62708-166-5
... Abstract Induction heating has many different applications, such as melting, heating stock for forging, and heat treating. This article begins with a discussion on the types of power supplies, namely, solid-state power supplies and oscillator tubes. It provides information on system elements...
Abstract
Induction heating has many different applications, such as melting, heating stock for forging, and heat treating. This article begins with a discussion on the types of power supplies, namely, solid-state power supplies and oscillator tubes. It provides information on system elements, including cooling systems, power supplies, heat stations, work handling fixtures, induction or work coils, and quench systems. The article discusses the influence of system elements on induction heat treating system design. It also deals with the general theory, types, and applications of induction coils.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001484
EISBN: 978-1-62708-173-3
...: A torch designed for either manual or mechanized operation Torch leads that carry the electric power, gas, and coolant to the torch A coolant system for the torch A power supply that provides the proper current and voltage for the plasma arc A manifold system for combining power, gas...
Abstract
Plasma arc cutting (PAC) is an erosion process that utilizes a constricted arc in the form of a high-velocity jet of ionized gas to melt and sever metal in a narrow, localized area. This article discusses the process description, equipment, gases, operating sequence, process considerations, and applications of PAC. It concludes with a discussion on the safety measures associated with the PAC process.
Book Chapter
Design and Fabrication of Inductors for Heat Treating, Brazing, and Soldering
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005841
EISBN: 978-1-62708-167-2
..., which reduces the total power supply output voltage required and lessens the risk of arcing between the leads. Depending on the power supply being used, the part being heated, and the desired operating frequency, it may be necessary to have more inductance in the leads to be able to properly tune...
Abstract
Inductors used for brazing can be machined from solid copper shapes or fabricated out of copper tubing, depending on the size and complexity of the braze joint geometry to be heated. This article provides information on inductors (coils) that are generally classified as solenoid, channel (slot), pancake, hairpin, butterfly, split-return, or internal coils. It discusses the variables pertinent to the design of inductors for brazing, soldering, or heat treating. The article presents various considerations for designing inductors for brazing of dissimilar materials that present a unique challenge in the field of induction brazing.
Image
Submerged arc welding setup for steam-drum shell course. Based metal: carbo...
Available to PurchasePublished: 01 January 1997
in.) per min Final passes (tandem SAW) (c) Leading head: Power supply 900 A motor-generator Electrode wire 5.6 mm ( 7 32 in.) diam 0.5% Mo steel (b) Current and voltage 800 A; 30 V Trailing head: Power supply 1000 A transformer Electrode wire 2.4 mm
More
Book Chapter
Introduction and Fundamental Principles of Induction Melting
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005895
EISBN: 978-1-62708-167-2
... leads to a high flexibility with regard to the charge materials and the production program with different alloy compositions. Power Supplies of Induction Crucible Furnaces As mentioned, since the 1980s, the line frequency connection of ICFs generally has been replaced by converter power supplies...
Abstract
In the metal producing and processing industries, induction melting and holding has found wide acceptance. This article provides a detailed account of the physical principles of induction melting processes. It discusses the fundamental principles and components of induction furnaces such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction melting installations.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005854
EISBN: 978-1-62708-167-2
... Abstract Induction heating system control is straightforward after the design and application of the coil and power supply required for the job. This article provides an overview of the basic components of an induction heating system, including a machine controller (computer or programmable...
Abstract
Induction heating system control is straightforward after the design and application of the coil and power supply required for the job. This article provides an overview of the basic components of an induction heating system, including a machine controller (computer or programmable logic controller), interface wiring, an operator interface, and safety controls. It also provides information on programming devices and temperature controllers, such as manual, auto, and auto-manual temperature controllers.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005851
EISBN: 978-1-62708-167-2
...-loop nonferrous recirculating system to cool the power supply, heat station, coils, bus, and water-cooled leads/cables. All use some sort of water-to-water heat exchanger in conjunction with plant water (dirty water) supplied by a cooling tower, radiator/fan, refrigeration-type chillers, city water...
Abstract
Cooling towers are designed to remove heat from water in an induction system and dissipate it into the atmosphere. This article provides information on closed-loop recirculating water systems of an induction system to cool the power supply. It focuses on various types of cooling towers, namely, air-cooled heat exchangers, air-cooled heat exchangers with trim cooler, closed-circuit evaporative cooling towers, and open evaporative cooling towers. The article discusses the importance of their placement or positioning to reduce the chances of air recirculation, and concludes with a discussion on refrigerant chillers.
Book Chapter
History and Applications
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005834
EISBN: 978-1-62708-167-2
... application of such “coreless” induction furnaces was limited by the power attainable from spark-gap generators. This limitation was alleviated to a certain extent in 1922 by the development of motor-generator sets that could supply power levels of several hundred kilowatts at frequencies up to 960 Hz...
Abstract
Electromagnetic induction is a way to heat electrically conductive materials such as metals. This article provides a brief history of electromagnetic induction and the development of induction heating technology. It explores various applications such as heating prior to metalworking, heat treating, melting, joining (welding, brazing/soldering, and shrink fitting), coating, paint curing, adhesive bonding, and zone refining of semiconductors. The article also discusses the advantages of induction heating.
Book Chapter
Power Supplies for Induction Heat Treating, Brazing, and Soldering
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005838
EISBN: 978-1-62708-167-2
... that can be paired with it. The side effect of the third limitation is sensitivity to work conditions, such as coil lead length and spacing, position of the workpiece in the coil, and so on. Most induction heating power supplies are designed to function only over a narrow range of load conditions...
Abstract
This article provides a brief description of load conditions for single-shot heat treating, vertical scanning, and brazing and soldering. It discusses the various power components used in power supplies. These include capacitors, integrated power module, transformers, and various switching devices, namely, silicon-controlled rectifiers, insulated-gate bipolar transistors, and metal-oxide semiconductor field-effect transistors. The article also provides information on frequency-multiplication harmonic-induction power supplies, namely, push-pull and half-bridge inverters and full-bridge inverters. Series resonant and parallel resonant circuits and their tuning calculations associated with output networks are also discussed. The article describes the frequency range of simultaneous dual-frequency induction heating power supply, and discusses the advantages, applications, and technical background of independently controlled frequency and power (IFP) induction heating power supply. It concludes with a description of the developments in control systems for modern induction power supplies.
Book Chapter
Electric Arc Cutting
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005176
EISBN: 978-1-62708-186-3
... Some Yes Nonmetallics No Yes Operating Principles The basic plasma arc cutting torch is similar in design to that of a plasma arc welding torch ( Ref 1 ). In its simplest form, a PAC system includes a gas-cooled torch with leads that connect to a power supply ( Fig. 3 ). The basic...
Abstract
Electric arc cutting is used on ferrous and nonferrous metals for rough severing, such as removing risers or scrap cutting, as well as for more closely controlled operations. This article describes the operating principles, equipment selection, process variables, and safety measures recommended for plasma arc cutting and air carbon arc cutting. Special applications of electric arc cutting, including shape cutting, gouging, and underwater cutting, are also discussed. The article provides information on other electric arc cutting methods, namely, the exo-process and oxygen arc cutting. It concludes with information on the seldom-used electric arc cutting methods, such as shielded metal arc cutting, gas metal arc cutting, and gas tungsten arc cutting.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... supply. This limitation can lead to insufficient filler-metal addition at faster travel speeds. If the required reinforcement or fillet size cannot be met for a given travel speed due to the limitations of the GMAW power supply, the travel speed, GMAW source, wire diameter, joint design, or the number...
Abstract
Hybrid laser arc welding (HLAW) is a metal joining process that combines laser beam welding (LBW) and arc welding in the same weld pool. This article provides a discussion on the major process variables for two modes of operation of HLAW, namely, stabilization mode and penetration mode. The major process variables for either mode of operation include three sets of welding parameters: the variables for the independent LBW and gas metal arc welding processes and welding variables that are specific to the HLAW process. The article discusses the advantages, limitations, and applications of the HLAW and describes the major components and consumables used for HLAW. The components include the laser source, gas metal arc welding source, hybrid welding head, and motion system. The article also describes the typical sources of defects and safety concerns of HLAW.
Book Chapter
Components and Design of Induction Crucible Furnaces
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005899
EISBN: 978-1-62708-167-2
... Abstract This article provides a detailed discussion on the components of a high-performance induction crucible furnace system, namely, furnace body, power supply, and peripheral components. The furnace body contains refractory lining, coil and transformer yokes, and tilting frame and furnace...
Abstract
This article provides a detailed discussion on the components of a high-performance induction crucible furnace system, namely, furnace body, power supply, and peripheral components. The furnace body contains refractory lining, coil and transformer yokes, and tilting frame and furnace cover. The power supply consists of the following: transformers, frequency converters, capacitor banks, and power cables and furnace coils. The peripheral components comprise recooling device, charging system, and skimming devices. The article also presents a three-dimensional representation of the induction crucible furnace system.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... . A basic GMAW system includes a welding power source, wire spool, wire feed unit, gas supply and delivery equipment, welding gun, workpiece, and electrical leads to connect the power source to the workpiece and gun. A wire electrode is continuously fed from a wire spool through a contact tube...
Abstract
This article discusses the operation principles, advantages, limitations, process parameters, consumables or electrodes, the equipment used, process variations, and safety considerations of gas metal arc welding (GMAW). It reviews the important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated controls are discussed.
Book Chapter
Induction Heating of Billets, Rods, and Bars
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005888
EISBN: 978-1-62708-167-2
... major factors associated with the location and magnitude of subsurface overheating: frequency, refractory, final temperature, and power distribution along the heating line. The article summarizes the pros and cons of using a single power supply. It also reviews the design features of modular systems...
Abstract
This article provides a rough estimate of the basic parameters, including coil efficiency, power, and frequency in induction heating of billets, rods, and bars. It focuses on the frequency selection for heating solid cylinders made of nonmagnetic metals, frequency selection when heating solid cylinders made from nonmagnetic alloys, and frequency selection when heating solid cylinders made from magnetic alloys. The article describes several design concepts that can be used for induction billet heating, namely, static heating and progressive/continuous heating. It presents the four major factors associated with the location and magnitude of subsurface overheating: frequency, refractory, final temperature, and power distribution along the heating line. The article summarizes the pros and cons of using a single power supply. It also reviews the design features of modular systems, and concludes with information on the temperature profile modeling software.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005909
EISBN: 978-1-62708-167-2
... of the circuit is the capacitor of the power supply that has a fixed value. (Eq 1) 2 π f r = 1 L C where f r is resonance frequency, L is inductance, and C is capacitance. A decrease of L (thinner refractory) leads to an increase of frequency. It must be pointed out...
Abstract
Melting with induction crucible furnaces (ICFs) is a well-established and reliable technology, and their maintenance must be performed at regularly scheduled intervals to ensure safe operation. This article discusses monitoring of the refractory lining, and presents an overview of the various wear-indication methods, namely, manual checks, ground leakage indication, evaluation of electrical values of the furnace, and temperature measurement. It also presents the working principle, physical restrictions, limitations, and remarks on these methods.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... of factors, the most influential of which are: Magnitude and type of welding current Electrode diameter Electrode composition Electrode extension beyond the contact tip or tube Shielding gas Power supply output Short-Circuiting Transfer Short-circuiting transfer encompasses...
Abstract
Gas-metal arc welding (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and a workpiece. This article discusses the advantages and limitations, operating principle, metal transfer mechanisms, and process variables of the GMAW process. The process variables include welding current, polarity, arc voltage, travel speed, electrode extension, electrode orientation, and electrode diameter. The major components of the basic equipment for a typical GMAW installation are discussed. The article also describes two consumable elements, such as electrode and shielding gas, of the GMAW process. It concludes with information on the safety aspects.
Book Chapter
Process Design for Induction Brazing and Soldering
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005856
EISBN: 978-1-62708-167-2
..., surface heating, and welding, in that the ultimate goal is to produce finished parts that meet all customer requirements, whether the customer is internal or external. Beginning with the right type and size power supply ( Fig. 1 ) and a well-designed induction coil, empirical testing is normally...
Abstract
This article focuses on the process design set-up procedure for brazing and soldering. It provides a detailed account of the types of base metals that can be joined by these processes, and reviews the factors to be considered to enhance the joint design. Criteria for selection of the right induction heating equipment to carry out the brazing or soldering operation are also provided. The article describes the types of brazing filler metals and joint designs. It also presents the types of inspection methods, namely, mechanical and visual, used to determine the quality of the brazed joint. Important considerations for the automation of induction-heated brazing applications are also discussed. The article concludes by emphasizing the need for documenting an in-control process which is a vitally important reference for questions or problems arising in the machine settings or part quality.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002159
EISBN: 978-1-62708-188-7
... and indicators. The heart of the spindle is two lead zirconate titanate piezoelectric disks, which convert the electrical energy from the power supply into a mechanical vibration. These disks expand and contract in sympathy with the polarity of the voltage applied to them and are attached to a titanium alloy...
Abstract
The ultrasonic machining (USM) process consists of two methods, namely, ultrasonic impact grinding and rotary USM. This article lists the major ultrasonic components that are similar to both rotary USM and ultrasonic impact grinding. It also provides schematic representations of the components used in rotary USM and ultrasonic impact grinding. The article describes the operations of the components of the rotary ultrasonic machine and ultrasonic impact grinding machine. It discusses the applications of the rotary ultrasonic machine: drilling, milling, and surface grinding. The article concludes with information on machining characteristics of ultrasonic impact grinding.
1