Skip Nav Destination
Close Modal
Search Results for
power-law breakdown
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 137 Search Results for
power-law breakdown
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005404
EISBN: 978-1-62708-196-2
... materials using expressions known as constitutive equations that relate the dependence of stress, temperature, and microstructure on deformation. The article reviews the characteristics of creep deformation and mechanisms of creep, such as power-law creep, low temperature creep, power-law breakdown...
Abstract
This article, to develop an understanding of the underlying mechanisms governing deformation at elevated temperatures, discusses the phenomenological effects resulting from temperature-induced thermodynamic and kinetic changes. It describes the deformation behavior of engineering materials using expressions known as constitutive equations that relate the dependence of stress, temperature, and microstructure on deformation. The article reviews the characteristics of creep deformation and mechanisms of creep, such as power-law creep, low temperature creep, power-law breakdown, diffusional creep, twinning during creep deformation, and deformation mechanism maps. It discusses the creep-strengthening mechanisms for most structural engineering components. The article provides a description of the microstructural modeling of creep in engineering alloys.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003288
EISBN: 978-1-62708-176-4
... “Power-Law Breakdown.” Deformation-Mechanism Maps With a knowledge of the stress and temperature dependence of the creep rate for each mechanism, it is possible to construct plots showing the regimes for the various mechanisms in the stress/temperature space. These plots, which are usually called...
Abstract
This article reviews the basic equipment and methods for creep and creep rupture testing. It begins with a discussion on the creep properties, including stress and temperature dependence, as well as of the extrapolation techniques that permit estimation of the long-term creep and rupture strengths of materials. The article describes the different types of equipment for determination of creep characteristics, including test stands, furnaces, and extensometers. It also discusses the different testing methods for creep rupture: constant-load testing and constant-stress testing. The article presents other testing considerations and concludes with information on stress relaxation testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003287
EISBN: 978-1-62708-176-4
... of strain rate. However, above a normalized stress of about σ/ E = 10 −3 (or a normalized shear stress, τ/ G = 10 −3 ), the creep rate begins to increase more strongly with applied stress. From the perspective of power law creep, this region is described as power law breakdown and can be described...
Abstract
Creep deformation is normally studied by applying either a constant load or a constant true stress to a material at a sufficiently high homologous temperature so that a measurable amount of creep strain occurs in a reasonable time. This article provides the phenomenological descriptions of creep and explains the testing and mechanism of creep in crystalline solids. It also presents information on the creep response of crystalline and amorphous solids.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002475
EISBN: 978-1-62708-194-8
.... The value of the current can be expressed as (Ohm's Law): (Eq 1) I = V R (Eq 2) V = I R (Eq 3) R = ρ l A (Eq 4) ρ = R A l where R is the electrical (Ohmic) resistance of the wire, in Ω; ρ is the electrical resistivity of the wire material, in Ω · m...
Abstract
This article presents an overview of the electric and magnetic parameters and discusses the significance of these parameters for electronic applications. It describes the components of analog and digital electronic circuits. The article reviews the augmenting technologies: magnetic and special technologies such as electrooptical.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003026
EISBN: 978-1-62708-200-6
... breakdown tests without actual field data to back up the results; thus, accelerated aging tests should be treated as qualitative failure predictors. Deviations from Ohm's Law Although bulk resistance, as defined by Ohm's law ( V = IR ), is the parameter most commonly used to characterize conduction...
Abstract
In terms of their electrical properties, plastics can be divided into thermosetting and thermoplastic materials, some of which are conductive or semiconductive. This article provides detailed information on factors that affect the property of plastics. It discusses the major test methods used to determine the following dielectric properties of plastics: dielectric breakdown voltage, dielectric strength, dielectric constant, dissipation factor, arc tracking resistance, insulation resistance, volume, and surface resistivity or conductivity. The test specifications and conditions, recommended by several U.S. and foreign testing organizations for characterizing the electrical properties of plastic materials are listed. The article describes the influence of these properties on selection of plastics for insulation application. An outline of the electromagnetic shielding and testing methods of electromagnetic interference are also provided. Designations, electrical properties, and applications of elastomers are tabulated.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004115
EISBN: 978-1-62708-184-9
... street railways. The first documented occurrence ( Ref 1 ) in 1894 was due to a direct current (dc) powered railway installed in Richmond, VA, in 1888. In Boston, MA, during 1892, a negative cable laid between the tracks was bonded frequently to a parallel water main as the first documented attempt...
Abstract
Stray current can be defined as a current in structures that are underground or immersed in an electrolyte that most often accelerate corrosion on a structure where a positive current leaves the structure to enter the earth or an electrolyte. This article provides a description of the principles of stray current and a discussion on the major types of stray current and their properties and prediction methods. It discusses the consequences of stray current and describes the interference tests used for mapping the path of the stray currents. The article also highlights the methods of mitigating the source of stray current.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
.... Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). Additionally, the Larson-Miller...
Abstract
This article describes the general aspects of creep, stress relaxation, and yielding for homogeneous polymers. It then presents creep failure mechanisms in polymers. The article discusses extrapolative methods for the prediction of long-term creep failure in polymer materials. Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). Additionally, the Larson-Miller parametric method, one of the most common to describe the material deformation and rupture time, is also discussed.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002373
EISBN: 978-1-62708-193-1
... lubrication, but dents have been shown to disturb the EHD film and cause local film breakdown. The possibility of a fatigue limit for rolling contact (deviation from the inverse load power law) has been investigated. Tallian ( Ref 14 ) has analyzed test data from bearing tests run at high Λ values under...
Abstract
Contact fatigue is a surface-pitting-type failure commonly found in ball or roller bearings. This article discusses the mechanisms of contact fatigue found in gears, cams, valves, rails, and gear couplings. It discusses the statistical analysis of rolling contact bearing-life tests. The article concludes with information on various approaches that improve the contact fatigue resistance of rolling contact systems.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005609
EISBN: 978-1-62708-174-0
... = η P S where η is the heat-source transfer efficiency, P is the heat-source power, and S is the heat-source travel speed. The heat input represents the amount of energy delivered per unit length of weld. It should be noted that ε, G , and R cannot be represented by single values during...
Abstract
This article reviews the fundamental solidification concepts for understanding microstructural evolution in fusion welds. The common concepts, namely, nucleation, competitive grain growth, constitutional supercooling, solute redistribution, and rapid solidification, depend on the solidification parameters during welding, are discussed. The article discusses important solidification parameters, including temperature gradient, solid/liquid interface growth rate, and cooling rate.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
... may bring the electrode closer to the potential for passivity breakdown or even cause pitting initiation. In the body fluids, which generally are oxygenated, the oxidation power is mainly a function of the concentration of dissolved oxygen. The reaction describing the cathodic reduction...
Abstract
The interaction of an implant with the human body environment may result in degradation of the implant, called corrosion. This article discusses the corrosion testing of metallic implants and implant materials. The corrosion environments for medical implants are the extracellular human body fluids, very complex solutions containing electrolytes and nonelectrolytes, inorganic and organic constituents, and gases. The article describes the fundamentals of electrochemical corrosion testing and provides a brief discussion on various types of corrosion tests. It illustrates corrosion current density determination by Tafel extrapolation, potentiodynamic measurement of the polarization resistance, electrochemical impedance measurement, and potentiostatic deaeration. Tests combining corrosion and mechanical forces, such as fretting corrosion tests, environment-assisted cracking tests, and ion-leaching tests are also discussed.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001233
EISBN: 978-1-62708-170-2
...) Deburring and radiusing. (i) Electropolishing The rate of material removal in ECM is governed by Faraday's law, since it is a function of current. The primary variables that affect the current density and the material removal rate are: Voltage Feed rate Electrolyte conductivity...
Abstract
Nontraditional finishing processes include electrochemical machining (ECM), electrodischarge machining (EDM), and laser beam machining. These processes belong to nonabrasive finishing methods where surface generation occurs with an insignificant amount of mechanical interaction between the processing tool and the workpiece surfaces. This article provides information on the equipment used, applications, process capabilities, and limitations of ECM and EDM.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002161
EISBN: 978-1-62708-188-7
... Abstract This article describes the various characteristics of electrochemical grinding (ECG). It discusses grinding methods that can be performed with ECG components, namely, the electrolyte delivery and circulating system, the electrolyte, the DC power supply, grinding wheel...
Abstract
This article describes the various characteristics of electrochemical grinding (ECG). It discusses grinding methods that can be performed with ECG components, namely, the electrolyte delivery and circulating system, the electrolyte, the DC power supply, grinding wheel, and the workpiece. Grinding, surface grinding, internal grinding, form grinding, and cylindrical grinding are discussed. The article also lists the advantages, disadvantages, and applications of ECG.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005793
EISBN: 978-1-62708-165-8
... Schematic drawing of a plasma carburizing furnace. Courtesy of IPSEN International For the plasma process, the gases methane, hydrogen, and argon should be provided. If carbonitriding processes are planned, nitrogen should be held available. With the addition of propane and acetylene, plasma-powered...
Abstract
The plasma carburizing process is basically a low-pressure carburizing process making use of a high-voltage electrical field applied between the load to be treated and the furnace wall producing activated and ionized gas species responsible for carbon transfer to the workpieces. This article begins with an overview of the theoretical background and the range and limitations of glow-discharge plasma. It describes the plasma carburizing process, which is carried out with methane or propane. Plasma carburizing processes of sinter metals and stainless steels, and the influence of current pulse length on carbon input of low-pressure carburizing process are also described. The article presents the basic requirements and process parameters to be considered in plasma carburizing equipment. It also exemplifies a still-working plasma process in industrial measure.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005905
EISBN: 978-1-62708-167-2
... engineering with 16,000 kW/250 Hz connected power ( Ref 5 ). Melting large, collected returns is the basis for economic melting operations of this unit, the largest induction furnace in a steel foundry to date (2013). Fig. 1 A 38 ton 16 MW/250 Hz induction crucible furnace before tapping in a steel...
Abstract
Crucible furnaces, as compared to electric arc furnaces, are increasingly deployed in various melting practices due to their environmental and workplace friendliness and their process benefits. This article focuses on the application of induction crucible furnaces for melting and pouring operations in small-and medium-sized steel foundries, including aluminum, copper, and zinc industries. It also provides information on the process engineering benefits of melting and pouring operations.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004136
EISBN: 978-1-62708-184-9
... and liquid hydrocarbons) Fuel cells also offer the ability to hybridize with gas turbines as well as the potential to develop near-zero-emissions power plants and to capture greenhouse gas from the exhaust, ultimately leading to a hydrogen economy and infrastructure. At present, widespread use of fuel...
Abstract
This article describes the classification of fuel cells depending on the operating temperature and type of electrolytes used. This classification includes alkaline fuel cells, phosphoric acid fuel cells, polymer electrolyte membrane fuel cells (PEMFCs), molten carbonate fuel cells (MCFCs), and solid oxide fuel cells (SOFCs). The article explains the corrosion processes in fuel cells due to solid-gas interactions, solid-liquid interactions, and solid-solid interactions. It discusses the long-term performance stability and long-term degradation processes of PEMFCs, MCFCs, and SOFCs. The article reviews the development of chemically and structurally compatible component materials in PEMFCs, MCFCs, and SOFCs.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005639
EISBN: 978-1-62708-174-0
... is both an old and a new subject. It is old, because some of the original work in both laser and electron beam welding was done with relatively low-power systems, and hence, the welds made were small. It is new in that the progress of miniaturization in industry has made the desire to make microjoints...
Abstract
Microjoining with high energy density beams is a new subject in the sense that the progress of miniaturization in industry has made the desire to make microjoints rapidly and reliably a current and exciting topic. This article summarizes the current state of microjoining with both electron and laser beams. It considers the elementary physical processes such as heat and fluid flow to introduce the reader to the phenomena that affect melting, coalescence, and solidification needed for a successful microweld. The various forces driving (and resisting) fluid flow are analyzed. The article discusses the equipment suitable for microjoining and the metallurgical consequences and postweld metrology of the process. It also provides examples of developmental welds employing laser and electron beam microwelding techniques.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006337
EISBN: 978-1-62708-179-5
.... With environmental laws requiring more elaborate pollution-control equipment, the cupola lost much of its advantage of low cost and simplicity, especially on small cupolas. Cupola designs have changed dramatically during the past 50 years. During the 1960s, cupolas used refractory-lined shells with no water...
Abstract
Various types of furnaces have been used for cast iron melting. In terms of tonnage, the primary melting methods used by iron casting facilities are cupola and induction furnaces. This article describes the operation and control principles of cupola furnace. It discusses the advantages of specialized cupolas such as cokeless cupola and plasma-fired cupola. Melting in iron foundries is a major application of induction furnaces. The article describes the operations of two induction furnaces: the channel induction furnace and the induction crucible furnace. It explains the teapot principle of pressure-actuated pouring furnaces and provides information on the effect of pouring magnesium-treated melts.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002160
EISBN: 978-1-62708-188-7
... machines have manual voltage and feed rate controls, while more advanced machines have computer numerical control (CNC) of the machine axes and process parameters. Most machines control feed rate and voltage. Power Supplies Power supplies are equipped with devices for monitoring amperage, which...
Abstract
Electrochemical machining (ECM) is the controlled removal of metal by anodic dissolution in an electrolytic cell in which the workpiece is the anode and the tool is the cathode. This article begins with a description of the ECM system and then discusses the primary variables that affect current density and the material removal rate in the ECM process. It reviews the various characteristics of electrolytes and considers tool material and design. It also provides an overview of the properties of the workpiece and defines the surface finish and accuracy of an electrochemically machined sample. The variety of work done by electrochemical machining is also exemplified in the article.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... diffracting power as well as the prevailing overall diffraction conditions. Local diffracting power is affected by the distorted regions surrounding an imperfection, leading to differences in intensities between these regions and the surrounding more-perfect regions. This intensity variation gives rise...
Abstract
X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical background and development trends in x-ray diffraction topography. The discussion covers the general principles, components of systems, and applications of x-ray topography techniques, namely conventional X-ray topographic techniques and synchrotron x-ray topographic techniques.