1-20 of 287 Search Results for

power spinning

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 December 1998
Fig. 30 Schematic illustration of power spinning in a vertical machine More
Image
Published: 01 January 2006
Fig. 6 Typical arrangement for power spinning a cone in a single operation. The mandrel diameter is 188 mm (7.5 in.), t 1 is the thickness of the preform, and t 2 is the wall thickness of the final conical component. The included angle of the cone is α. For the case of power spinning More
Image
Published: 01 January 2006
Fig. 7 Typical arrangement for power spinning a cone in two stages. The two-step approach is used for small included cone angles (35° in this figure). Dimensions given in inches More
Image
Published: 01 January 2006
Fig. 8 Schematic diagrams of a vertical arrangement employed for power spinning of large-diameter cones. The diagram shows the preform, clamping cylinder, and the positioning cylinders that are used to control the axial, radial, and angular positions of the roller and for the forming scheme More
Image
Published: 01 January 2006
Fig. 12 Typical mandrel used for power spinning of cones. Generally, there are small bosses on the nose and tail for clamping in the tailstock and headstock, respectively. Dimensions given in inches More
Image
Published: 01 January 2005
Fig. 17 Processing sequences for (a) ring rolling and (b) power spinning rocket engine case cylinders, together with the respective rocket engine case assemblies. See Example 11 . Dimensions in figure given in inches Item Ring-rolled forging (power spun) Material D-6ac steel More
Book Chapter

By B.P. Bewlay, D.U. Furrer
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005123
EISBN: 978-1-62708-186-3
... Abstract Metal spinning is a term used to describe the forming of metal into seamless, axisymmetric shapes by a combination of rotational motion and force. This article describes two forming techniques, such as manual spinning and power spinning, for forming seamless metal components...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005144
EISBN: 978-1-62708-186-3
... and the lubricants used in the processes. It discusses the various forming processes of magnesium alloys. These include press-brake forming, deep drawing, manual and power spinning, rubber-pad forming, stretch forming, drop hammer forming, and precision forging. cold forming deep drawing drop hammer forming...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005146
EISBN: 978-1-62708-186-3
... and lubricants used in the forming process. It provides information on the cold and hot forming, superplastic forming, and combination of superplastic forming/diffusion bonding. The article discusses the various forming processes of these titanium alloys, including press-brake forming, power (shear) spinning...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005139
EISBN: 978-1-62708-186-3
... Abstract This article discusses the selection of types of stainless steel for various methods of forming based on the formability and on the power required for forming. It reviews the requirements of lubrication, blanking, and piercing. The article describes various forming methods, namely...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003178
EISBN: 978-1-62708-199-3
.... Machines used for tube spinning are usually the same as those used for power spinning of cones or other shapes. The few special features that are required for tube spinning are normally specified and can be supplied on all power spinning machines. A power spinning machine has the same size capacity...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003177
EISBN: 978-1-62708-199-3
... Abstract This article describes the presses that are mechanically or hydraulically powered and used for producing sheet, strip, and plate from sheet metal. It also presents the JIC standards for presses, compares the presses based on power source, details the selection criteria and provides...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001750
EISBN: 978-1-62708-178-8
.... 3 Power reflected from a microwave-resonant cavity as a function of frequency. The resonant frequency is ω 0 the full width at half amplitude is Δω. Detection The last electronic system to be discussed is the crystal detector/preamplifier/lock-in detector combination. Electron spin...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005145
EISBN: 978-1-62708-186-3
... are not recommended for use in spinning, because this operation may burnish the lubricant into the surface of the metal. In power spinning, a coolant should also be used during the process (see the article “Spinning” in this Volume). Occasionally, it is advantageous to use two kinds of lubricant in the same...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006650
EISBN: 978-1-62708-213-6
... Abstract This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001752
EISBN: 978-1-62708-178-8
.... If the detection system output is proportional to the power absorbed by the nuclear spin system, the resonance signal observed will be proportional to χ″, as given by Eq 11(c) . This is termed an absorption lineshape, and if γ 2 H 1 2 T 1 T 2 → 1, it will have a Lorentzian shape. It is also...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003200
EISBN: 978-1-62708-199-3
... of frequency, power, duration of heating, and coil design for induction hardening. The article also discusses the scope, application, methods, and operation of flame hardening. electron-beam heat treating flame hardening induction hardening induction tempering laser surface hardening Induction...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002167
EISBN: 978-1-62708-188-7
... cup (Wehnelt electrode) located between the cathode and anode acts as a grid that controls the number of electrons being accelerated (beam current). The bias cup also acts as a switch for the pulsing of the beam current. Beam current typically is adjustable from 1.0 to 80 mA, and pulse powers up to 12...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003258
EISBN: 978-1-62708-176-4
... process. For example, in bending, it is the minimum bend radius; in deep drawing, it is the maximum ratio of blank-to-punch diameters. In power spinning of tubular or curvilinear shapes, maximum deformation is the reduction in thickness per pass. It is generally recognized that there are two basic...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001469
EISBN: 978-1-62708-173-3
... method. The techniques are hot-tool, hot-gas, extrusion, focused infrared, laser, friction, vibration, spin, ultrasonic, and electromagnetic welding techniques (resistance, induction, dielectric, and microwave welding). The article concludes with a discussion on welding evaluation methods...