Skip Nav Destination
Close Modal
By
E. Doege, B.-A. Behrens, G. Kurz, O. Vogt
By
Joseph D. Beal, Rodney Boyer, Daniel Sanders
By
Charles P. Poole, Jr., Horatio A. Farach
By
Serope Kalpakjian
Search Results for
power spinning
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 290
Search Results for power spinning
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Processing sequences for (a) ring rolling and (b) power spinning rocket eng...
Available to PurchasePublished: 01 January 2005
Fig. 17 Processing sequences for (a) ring rolling and (b) power spinning rocket engine case cylinders, together with the respective rocket engine case assemblies. See Example 11 . Dimensions in figure given in inches Item Ring-rolled forging (power spun) Material D-6ac steel
More
Image
Published: 01 December 1998
Image
Typical arrangement for power spinning a cone in a single operation. The ma...
Available to PurchasePublished: 01 January 2006
Fig. 6 Typical arrangement for power spinning a cone in a single operation. The mandrel diameter is 188 mm (7.5 in.), t 1 is the thickness of the preform, and t 2 is the wall thickness of the final conical component. The included angle of the cone is α. For the case of power spinning
More
Image
Typical arrangement for power spinning a cone in two stages. The two-step a...
Available to PurchasePublished: 01 January 2006
Fig. 7 Typical arrangement for power spinning a cone in two stages. The two-step approach is used for small included cone angles (35° in this figure). Dimensions given in inches
More
Image
Schematic diagrams of a vertical arrangement employed for power spinning of...
Available to PurchasePublished: 01 January 2006
Fig. 8 Schematic diagrams of a vertical arrangement employed for power spinning of large-diameter cones. The diagram shows the preform, clamping cylinder, and the positioning cylinders that are used to control the axial, radial, and angular positions of the roller and for the forming scheme
More
Image
Typical mandrel used for power spinning of cones. Generally, there are smal...
Available to PurchasePublished: 01 January 2006
Fig. 12 Typical mandrel used for power spinning of cones. Generally, there are small bosses on the nose and tail for clamping in the tailstock and headstock, respectively. Dimensions given in inches
More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005123
EISBN: 978-1-62708-186-3
... Abstract Metal spinning is a term used to describe the forming of metal into seamless, axisymmetric shapes by a combination of rotational motion and force. This article describes two forming techniques, such as manual spinning and power spinning, for forming seamless metal components...
Abstract
Metal spinning is a term used to describe the forming of metal into seamless, axisymmetric shapes by a combination of rotational motion and force. This article describes two forming techniques, such as manual spinning and power spinning, for forming seamless metal components. The process technology, equipment, and tooling for both manual spinning and power spinning are also discussed.
Book Chapter
Forming of Magnesium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005144
EISBN: 978-1-62708-186-3
... and the lubricants used in the processes. It discusses the various forming processes of magnesium alloys. These include press-brake forming, deep drawing, manual and power spinning, rubber-pad forming, stretch forming, drop hammer forming, and precision forging. cold forming deep drawing drop hammer forming...
Abstract
In terms of forming, magnesium alloys are much more workable at elevated temperatures due to their hexagonal crystal structures. This article describes the deformation mechanisms of magnesium and provides information on the hot and cold forming processes of magnesium alloys and the lubricants used in the processes. It discusses the various forming processes of magnesium alloys. These include press-brake forming, deep drawing, manual and power spinning, rubber-pad forming, stretch forming, drop hammer forming, and precision forging.
Book Chapter
Forming of Titanium and Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005146
EISBN: 978-1-62708-186-3
... and lubricants used in the forming process. It provides information on the cold and hot forming, superplastic forming, and combination of superplastic forming/diffusion bonding. The article discusses the various forming processes of these titanium alloys, including press-brake forming, power (shear) spinning...
Abstract
This article describes different types of titanium alloys, including alloy Ti-6Al-4V, alpha and near-alpha alloys, and alpha-beta alloys. It explains the formability of titanium alloys with an emphasis on the Bauschinger effect. The article provides information on the tool materials and lubricants used in the forming process. It provides information on the cold and hot forming, superplastic forming, and combination of superplastic forming/diffusion bonding. The article discusses the various forming processes of these titanium alloys, including press-brake forming, power (shear) spinning, rubber-pad forming, stretch forming, contour roll forming, creep forming, vacuum forming, drop hammer forming, joggling, and explosive forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005139
EISBN: 978-1-62708-186-3
... Abstract This article discusses the selection of types of stainless steel for various methods of forming based on the formability and on the power required for forming. It reviews the requirements of lubrication, blanking, and piercing. The article describes various forming methods, namely...
Abstract
This article discusses the selection of types of stainless steel for various methods of forming based on the formability and on the power required for forming. It reviews the requirements of lubrication, blanking, and piercing. The article describes various forming methods, namely, press-brake forming, press forming, multiple-slide forming, deep drawing, spinning, rubber-pad forming, drop hammer forming¸ three-roll forming, contour roll forming, stretch forming, and bending of tubing.
Book Chapter
Forming of Bars, Tube, and Wire
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003178
EISBN: 978-1-62708-199-3
.... Machines used for tube spinning are usually the same as those used for power spinning of cones or other shapes. The few special features that are required for tube spinning are normally specified and can be supplied on all power spinning machines. A power spinning machine has the same size capacity...
Abstract
This article discusses the mechanics, surface preparation and principles of metal forming operations such as drawing, bending (draw bending, compression bending, roll bending, and stretch bending), spinning, and straightening of bars, tubes, wires, rods and structural shapes. The article also discusses the machines and tools, including dies and mandrels, and lubricants used for these metal forming operations.
Book Chapter
Forming of Sheet, Strip, and Plate
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003177
EISBN: 978-1-62708-199-3
... Abstract This article describes the presses that are mechanically or hydraulically powered and used for producing sheet, strip, and plate from sheet metal. It also presents the JIC standards for presses, compares the presses based on power source, details the selection criteria and provides...
Abstract
This article describes the presses that are mechanically or hydraulically powered and used for producing sheet, strip, and plate from sheet metal. It also presents the JIC standards for presses, compares the presses based on power source, details the selection criteria and provides information on the various drive systems and the auxiliary equipment. It describes the selection of die materials and lubricants for sheet metal forming and provides information on the lubrication mechanisms and selection with a list of lubricant types for forming of specific sheet materials of ferrous or nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer forming, explosive forming, electromagnetic forming, and superplastic forming.
Book Chapter
Electron Spin Resonance
Available to PurchaseSeries: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001750
EISBN: 978-1-62708-178-8
.... 3 Power reflected from a microwave-resonant cavity as a function of frequency. The resonant frequency is ω 0 the full width at half amplitude is Δω. Detection The last electronic system to be discussed is the crystal detector/preamplifier/lock-in detector combination. Electron spin...
Abstract
Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is an analytical technique that can extract a great deal of information from any material containing unpaired electrons. This article explains how ESR works and where it applies in materials characterization. It describes a typical ESR spectrometer and explains how to tune it to optimize critical electromagnetic interactions in the test sample. It also identifies compounds and elements most suited for ESR analysis and explains how to extract supplementary information from test samples based on the time it takes electrons to return to equilibrium from their resonant state. Two of the most common methods for measuring this relaxation time are presented as are several application examples.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005145
EISBN: 978-1-62708-186-3
... are not recommended for use in spinning, because this operation may burnish the lubricant into the surface of the metal. In power spinning, a coolant should also be used during the process (see the article “Spinning” in this Volume). Occasionally, it is advantageous to use two kinds of lubricant in the same...
Abstract
This article tabulates the nominal compositions for nickel and cobalt alloys. It illustrates the comparison of strain-hardening rates of a number of alloys in terms of the increase in hardness with increasing cold reduction. The forming practice for age-hardenable alloys and the lubricants used in the forming processes of nickel and cobalt alloys are also discussed. The article summarizes the modification of tools and dies used for cold forming other metals, as the physical and mechanical properties of nickel and cobalt alloys frequently necessitate it. It discusses forming techniques for these alloys and provides several examples of these techniques, which include shearing, blanking, piercing, deep drawing, spinning, explosive forming, bending, and expanding/tube forming.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006650
EISBN: 978-1-62708-213-6
... Abstract This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin...
Abstract
This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin descriptions and line narrowing and spectral resolution and describing the impact of magnetic field on nuclear spins and the factors determining resonance frequency. This is followed by a description of various systems and equipment necessary for NMR spectroscopy. A discussion on general sampling for solid-state NMR, sample-spinning requirements, and extraneous signals is then included. Various factors pertinent to accurate calibration of the NMR spectrum are also described. The article provides information on some of the parameters both beneficial and problematic for processing NMR data. It ends with a description of the applications of NMR in glass science and ceramics.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001752
EISBN: 978-1-62708-178-8
.... If the detection system output is proportional to the power absorbed by the nuclear spin system, the resonance signal observed will be proportional to χ″, as given by Eq 11(c) . This is termed an absorption lineshape, and if γ 2 H 1 2 T 1 T 2 → 1, it will have a Lorentzian shape. It is also...
Abstract
Nuclear magnetic resonance (NMR) is a form of radio frequency spectroscopy based on interactions between nuclear magnetic dipole or electric quadrupole moments and an applied magnetic field or electric-field gradient. This article provides an overview of the fundamental principles of nuclear magnetic resonance with emphasis on nuclei properties, the basic equation of nuclear magnetic resonance, the classical theory of nuclear magnetization, line broadening, and measurement sensitivity. It describes the pulse-echo method for observing NMR. The article provides useful information on ferromagnetic nuclear resonance and nuclear quadrupole resonance, and illustrates the experimental arrangement of NMR with a block diagram. It also presents several application examples.
Book Chapter
Localized Heat Treating
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003200
EISBN: 978-1-62708-199-3
... of frequency, power, duration of heating, and coil design for induction hardening. The article also discusses the scope, application, methods, and operation of flame hardening. electron-beam heat treating flame hardening induction hardening induction tempering laser surface hardening Induction...
Abstract
This article discusses the fundamentals and applications of localized heat treating methods: induction hardening and tempering, laser surface transformation hardening, and electron-beam heat treatment. The article provides information about equipment and describes the selection of frequency, power, duration of heating, and coil design for induction hardening. The article also discusses the scope, application, methods, and operation of flame hardening.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002167
EISBN: 978-1-62708-188-7
... cup (Wehnelt electrode) located between the cathode and anode acts as a grid that controls the number of electrons being accelerated (beam current). The bias cup also acts as a switch for the pulsing of the beam current. Beam current typically is adjustable from 1.0 to 80 mA, and pulse powers up to 12...
Abstract
Electron beam machining (EBM) uses a focused beam of high-velocity electrons to remove material. This article provides a description of equipment used for EBM and discusses the process characteristics, applications, advantages, and disadvantages of electron beam drilling.
Book Chapter
Mechanical Testing for Metalworking Processes
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003258
EISBN: 978-1-62708-176-4
... process. For example, in bending, it is the minimum bend radius; in deep drawing, it is the maximum ratio of blank-to-punch diameters. In power spinning of tubular or curvilinear shapes, maximum deformation is the reduction in thickness per pass. It is generally recognized that there are two basic...
Abstract
An important activity in metalworking facilities is the testing of raw materials for characteristics that ensure the integrity and quality of the products made. This article reviews the common material parameters that can have a direct or indirect influence on workability and product quality. These include strength, ductility, hardness, strain-hardening exponent, strain-rate effects, temperature effects, and hydrostatic pressure effects. The article also reviews the material behavior characteristics typically determined by mechanical testing methods. It discusses various mechanical testing methods, including the tension test, plane-strain tension test, compression test, plane-strain compression test, partial-width indentation test, and torsion test. Aspects of testing particularly relevant to workability and quality control for metalworking processes are also described. Finally, the article details the various factors influencing workability in bulk deformation processes and formability in sheet-metal forming.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001469
EISBN: 978-1-62708-173-3
... method. The techniques are hot-tool, hot-gas, extrusion, focused infrared, laser, friction, vibration, spin, ultrasonic, and electromagnetic welding techniques (resistance, induction, dielectric, and microwave welding). The article concludes with a discussion on welding evaluation methods...
Abstract
Polymeric materials that possess similar solubility parameters can be joined using a variety of polymer joining techniques. This article describes commonly available fusion-welding techniques such as joining methods, key joining parameters, and the application areas of each joining method. The techniques are hot-tool, hot-gas, extrusion, focused infrared, laser, friction, vibration, spin, ultrasonic, and electromagnetic welding techniques (resistance, induction, dielectric, and microwave welding). The article concludes with a discussion on welding evaluation methods.
1