Skip Nav Destination
Close Modal
By
R.D. Blaugher
By
Michael L. Marucci, James A. Catanese
By
Vladimir Duz, Andrey Klevtsov, Viktor Sukhoplyuyev
By
James R. Ciulik, John A. Shields, Jr., Prabhat Kumar, Todd Leonhardt, John L. Johnson
Search Results for
powder-in-tube processing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 747
Search Results for powder-in-tube processing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Cross sections of two YBCO powder-in-tube processed superconductors. (a) Si...
Available to Purchase
in High-Temperature Superconductors for Wires and Tapes[1]
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 2 Cross sections of two YBCO powder-in-tube processed superconductors. (a) Silver-sheathed tape conductor with YBa 2 Cu 3 O 7 core. (b) 0.38 mm (0.015 in.) diam multifilament YBa 2 Cu 3 O 7 wire consisting of 29 filaments of 15 μm (600 μin.) diameter. Courtesy of Intermagnetics General
More
Book Chapter
Pack Cementation Processes
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
... in the articles “Boriding (Boronizing) of Metals” and “Thermoreactive Deposition/Diffusion Process for Surface Hardening of Steels” in this Volume. The traditional pack consists of four components: the substrate or part to be coated, the master alloy (i.e., a powder of the element or elements to be deposited...
Abstract
Pack cementation is the most widely employed method of diffusion coating. This article briefly reviews pack cementation processes of aluminizing, chromizing, and siliconizing. It contains tables that list typical characteristics of pack cementation processes and commercial applications of pack cementation aluminizing, which is used to improve the performance of steels in high-temperature corrosive environments.
Book Chapter
High-Temperature Superconductors for Wires and Tapes
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001114
EISBN: 978-1-62708-162-7
..., including powder-in-tube processing, vapor deposition processing, and melt processing. It further discusses the microstructural, anisotropy and weak link influences on these processes. high-temperature superconductors melt processing oxide powder precursor powder precursor preparation powder...
Abstract
The discovery of the high-critical-temperature oxide superconductors has accelerated the interest for superconducting applications due to its higher-temperature operation at liquid nitrogen or above and thus reduces the refrigeration and liquid helium requirement. It also permits usage of the high-critical-temperature oxides in magnets or power applications in high-current-carrying wire or tape with acceptable mechanical capability. This article discusses the powder techniques mainly based on the production of an oxide powder precursor, which is then subjected to various processing, including powder-in-tube processing, vapor deposition processing, and melt processing. It further discusses the microstructural, anisotropy and weak link influences on these processes.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005719
EISBN: 978-1-62708-171-9
... Abstract This article discusses various control processes carried out in powder feeding, thermal spraying, and gas flow of the thermal spray process to standardize the coating quality. Quality of the entire powder feeding process can be achieved by controlling the processing of feeding...
Abstract
This article discusses various control processes carried out in powder feeding, thermal spraying, and gas flow of the thermal spray process to standardize the coating quality. Quality of the entire powder feeding process can be achieved by controlling the processing of feeding equipment as well as the characteristics of the powder being fed. Gas flow control can be achieved by using rotameters, critical orifices, and thermal mass flowmeters, whose ability to provide useful information is defined by their resolution, accuracy, linearity, and repeatability. The commercial thermal spray controls discussed here include the open-loop input-based, open-loop output-based, closed-loop input-based, and closed-loop output-based or adaptive controls. The article discusses the common causes and practical solutions for arc starting problems. It also outlines certain important developments in measuring individual and collective particle velocities, temperature, and trajectories as well as other plume characteristics for the plasma spray process.
Book Chapter
Production of Powder Metallurgy Carbon and Low-Alloy Steels
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006081
EISBN: 978-1-62708-175-7
... the tubes. The sponge cakes are subsequently processed in several steps, including a series of grinding, magnetic separation, and screening steps. This produces a powder of the desired particle size distribution and removes nonmagnetic impurities while preserving the porous nature of powder particles...
Abstract
This article briefly reviews the production methods and characteristics of plain carbon and low-alloy water-atomized iron and steel powders, high-porosity iron powder, carbonyl iron powder, and electrolytic iron powder. It emphasizes on atomized powders, because they are the most widely used materials for ferrous powder metallurgy. The article provides information on the properties and applications of these powders. It also includes an overview of diffusion alloying, basics of admixing, and bonded premixes.
Book Chapter
Extrusion of Metal Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006085
EISBN: 978-1-62708-175-7
... Abstract This article focuses on direct extrusion processing where metal powders undergo plastic deformation, usually at an elevated temperature, to produce a densified and elongated form having structural integrity. It provides information on the basic powder extrusion processes...
Abstract
This article focuses on direct extrusion processing where metal powders undergo plastic deformation, usually at an elevated temperature, to produce a densified and elongated form having structural integrity. It provides information on the basic powder extrusion processes and the mechanics of extrusion. The article also examines specific extrusion practices for the production of wrought material from powder stock and provides examples of materials processed by powder extrusion.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001086
EISBN: 978-1-62708-162-7
.... Beginning with an overview of the mining and refining processes of beryllium, this article discusses powder production and consolidation methods, beryllium grades and their designations, and the protective measures that have been enacted to reduce exposure to beryllium. beryllium beryllium...
Abstract
Beryllium is a metal with an unusual combination of physical and mechanical properties that make it particularly effective in optical components, precision instruments, and specialized aerospace applications. Almost all of the beryllium in use is a powder metallurgy (P/M) product. Beginning with an overview of the mining and refining processes of beryllium, this article discusses powder production and consolidation methods, beryllium grades and their designations, and the protective measures that have been enacted to reduce exposure to beryllium.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002481
EISBN: 978-1-62708-194-8
... cost and production factors are also tabulated. The process groups include casting; deformation; powder processing; machining; noncutting; joining; ceramic, glass, and polymer processing; and composites manufacturing. carbon-matrix composites casting ceramic-matrix composites ceramics...
Abstract
This article explores the possibilities and limitations imposed by manufacturing processes and materials. Detailed design rules for the processes are presented. The article lists the main features of process groups in a tabular form. The physical characteristics and ratings of relative cost and production factors are also tabulated. The process groups include casting; deformation; powder processing; machining; noncutting; joining; ceramic, glass, and polymer processing; and composites manufacturing.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006656
EISBN: 978-1-62708-213-6
... that the electron-generating portion was comprised of tungsten and the surrounding cup was comprised of tantalum, and that nothing had changed in the manufacturing process of the CRTs. Fig. 14 Cathode ray tube cathode. (a) Tungsten region. (b) Tantalum cup Micro-XRD patterns ( Fig. 15 ) were collected...
Abstract
This article discusses various concepts of micro x-ray diffraction (XRD) used for the examination of materials in situ. The discussion covers the principles, equipment used, sample preparation procedure, considerations for calibrating a detector, steps for performing data analysis, and applications and interpretation of micro-XRD.
Book Chapter
Beryllium
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003165
EISBN: 978-1-62708-199-3
.... Processing and Product Forms While beryllium can be melted and cast, the resulting casting has coarse grains (>50 μm) that are difficult to process, and attempts to refine them by alloying have been largely unsuccessful. The fine grain size is produced primarily by powder metallurgy (P/M) techniques...
Abstract
Beryllium possesses an unusual combination of physical and mechanical properties, suiting it for specialized applications where its relatively high cost can be justified. It has very low density, a moderately high melting point, high elastic modulus, and good electrical and thermal conductivity. The article describes structural, instrument, and optical grade beryllium and the corresponding compositional ranges. It also discusses processing and product forms as well as factors affecting corrosion resistance. The article concludes with a short note on health and safety considerations when handling beryllium.
Image
Plot of critical current density versus magnetic flux density to compare pr...
Available to Purchase
in High-Temperature Superconductors for Wires and Tapes[1]
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 1 Plot of critical current density versus magnetic flux density to compare properties of powder-in-tube process oxide-base superconductors with that of conventional superconductors. MRI, magnetic resonance imaging; SSC, superconducting supercollider
More
Book Chapter
Production of Titanium Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006078
EISBN: 978-1-62708-175-7
... Abstract This article provides a summary of the conventional technologies used for titanium powder production. It focuses on the various processes for titanium powder production, namely, Hunter, Kroll, Armstrong, MER, TIRO, FFC-Cambridge, Chinuka, and CSIR processes. Employment of titanium...
Abstract
This article provides a summary of the conventional technologies used for titanium powder production. It focuses on the various processes for titanium powder production, namely, Hunter, Kroll, Armstrong, MER, TIRO, FFC-Cambridge, Chinuka, and CSIR processes. Employment of titanium powder significantly improves the synthesis of titanium and its alloys.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002163
EISBN: 978-1-62708-188-7
... supplies, electrolyte system, part holding fixtures, cathode holders, and cathode tubes. Key process parameters for electrostream and capillary drilling are also discussed. capillary drilling cathode holders cathode tubes electrolyte system electrostream power supplies tooling...
Abstract
This article describes the applications, process capabilities, and limitations and advantages of electrostream and capillary drilling. It describes equipment and tooling used for electrostream and capillary drilling. These include electrostream and capillary drilling machines, power supplies, electrolyte system, part holding fixtures, cathode holders, and cathode tubes. Key process parameters for electrostream and capillary drilling are also discussed.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001111
EISBN: 978-1-62708-162-7
... wires (rod process, modified jelly roll process, niobium tube process, in-situ process, powder metallurgy process, and jelly roll method). The article focuses on reaction heat treatment, which is required at the end of wire processing to convert the ductile components to the desired, but brittle...
Abstract
This article reviews the phase diagrams, alloy with third element additions, layer growth, critical current density, and matrix materials of A15 superconductors. It describes the production methods of tape conductors (chloride deposition, and surface diffusion) and multifilamentary wires (rod process, modified jelly roll process, niobium tube process, in-situ process, powder metallurgy process, and jelly roll method). The article focuses on reaction heat treatment, which is required at the end of wire processing to convert the ductile components to the desired, but brittle, superconductor. Finally, it discusses the applications of A15 superconductors in commercial magnets, power generation, power transmission, high-energy physics, and fusion.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003141
EISBN: 978-1-62708-199-3
..., including all operations that convert ingot into general mill products, such as billet, bar, plate, sheet, strip, tube, and wire. The section on secondary fabrication describes processes such as die forging, extrusion, hot and cold forming, machining, chemical milling, and joining. The article presents...
Abstract
Titanium metal passes through three major steps during processing from ore to finished product: reduction of titanium ore to sponge (porous form), melting of sponge and scrap to form ingot, and remelting and casting into finished shape. This article describes primary fabrication, including all operations that convert ingot into general mill products, such as billet, bar, plate, sheet, strip, tube, and wire. The section on secondary fabrication describes processes such as die forging, extrusion, hot and cold forming, machining, chemical milling, and joining. The article presents a short note on powder metallurgy products of titanium. Casting processes and properties are covered in the final section.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002164
EISBN: 978-1-62708-188-7
... Abstract Shaped tube electrolytic machining (STEM) is a modified electrochemical machining (ECM) process that uses an acid electrolyte so that the removed metal goes into the solution instead of forming a precipitate. This article lists some specific machining applications of the STEM process...
Abstract
Shaped tube electrolytic machining (STEM) is a modified electrochemical machining (ECM) process that uses an acid electrolyte so that the removed metal goes into the solution instead of forming a precipitate. This article lists some specific machining applications of the STEM process, including turbine blade cooling holes, turbine vane cooling holes, turbine disk cooling passages, oil passages, and fuel nozzles. It describes the limitations and advantages of the STEM process. The article discusses the various tool parts of the STEM system, including the holding fixture, guide for cathodes, cathodes, and cathode holder/manifold. The article concludes with information on the process parameters of the STEM system.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006089
EISBN: 978-1-62708-175-7
... Abstract Milling of materials, whether hard and brittle or soft and ductile, is of prime interest and of economic importance to the powder metallurgy (PM) industry. This article discusses the principles of milling, milling parameters, and the powder characteristics required for the process...
Abstract
Milling of materials, whether hard and brittle or soft and ductile, is of prime interest and of economic importance to the powder metallurgy (PM) industry. This article discusses the principles of milling, milling parameters, and the powder characteristics required for the process. It discusses the changes in powder particle morphology that occur during milling of metal powders produced by various processes such as microforging, fracturing, agglomeration, and deagglomeration. The article also provides useful information on milling equipment such as tumbler ball mills, vibratory ball mills, attrition mills, and hammer and rod mills.
Book Chapter
Properties and Selection of Powder Metallurgy Refractory Metals
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006123
EISBN: 978-1-62708-175-7
... or rectangular sheet bar. These bars, as well as sintered products, are processed into sheet, plate, foil, tubing, and rod. Many tungsten products are intricate and cannot be fabricated from standard mill products; they require machining or pressing and sintering to near-net shape. Most refractory metals...
Abstract
This article focuses on the selection, properties, and applications of powder metallurgy refractory metals and their alloys, including tungsten, molybdenum, tantalum, niobium, and rhenium.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006440
EISBN: 978-1-62708-190-0
... was the development of the fluorescent penetrant process by R.C. Switzer. This liquid, used jointly with a powder developer, brought penetrant inspection from a relatively crude procedure to a more scientific operation. With fluorescent penetrant, minute flaws could be readily detected when exposed to ultraviolet...
Abstract
Liquid penetrant inspection is a nondestructive method of revealing discontinuities that are open to the surfaces of solid and essentially nonporous materials. This article provides information on physical principles, evolution, description, and processing parameters of liquid penetrant inspection as well as materials used. It discusses some of the more generally used types of equipment used in penetrant inspection and their requirements. The article describes various penetrant methods and their selection criteria and provides information on precleaning and postcleaning of workpieces before and after penetrant inspection. The quality assurance and maintenance of penetrant inspection materials are also discussed. The article concludes with information on specifications and standards applicable to penetrant inspection.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005731
EISBN: 978-1-62708-171-9
..., and atomic absorption spectrometry are also discussed. chemical methods crystal structure particle size powder testing sieve method thermal spray coating X-ray diffraction THE RAW MATERIALS used in thermal spray processes are a critical parameter in the finished coating. Lot-to-lot...
Abstract
The raw materials used in thermal spray processes are a critical parameter in the finished coating because the variations in their size, morphology, chemistry, and phase composition can significantly impact coating properties. Therefore, it is important to test and characterize the raw materials. This article discusses various characterization methods for powders. Topics discussed include: methods for determining particle size and/or size distribution; powder and coating stoichiometry; particle chemistry; and phase analysis by x-ray diffraction. This article discusses the characterization of thermal spray powders which involves the determination of particle size and/or size distribution and phase analysis by x-ray diffraction. It provides information on preferential volatilization and rapid solidification that influence compositional differences. Wet chemical methods, spectographic analysis, and atomic absorption spectrometry are also discussed.
1