1-20 of 99 Search Results for

powder-bed fusion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006543
EISBN: 978-1-62708-290-7
... Abstract Powder bed fusion (PBF) of polymers is a collection of additive manufacturing processes that melt and fuse polymer in a powder bed. This article provides a complete suite of materials and processes involved in PBF of polymers. The discussion includes details of thermal and...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006563
EISBN: 978-1-62708-290-7
... Abstract This article focuses on powder bed fusion (PBF) of ceramics, which has the potential to fabricate functional ceramic parts directly without any binders or post-sintering steps. It presents the results of three oxide ceramic materials, namely silica, zirconia, and alumina, processed...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006621
EISBN: 978-1-62708-290-7
...-atomized laser-powder bed fusion (LPBF) parts at various energy densities. The results from the study showed the strong dependence of densification, mechanical properties, and microstructures on temperature, pressure, and time during the HIP cycle. The density, ultimate tensile strength, hardness and yield...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006564
EISBN: 978-1-62708-290-7
... Abstract This article covers in-line process monitoring of the metal additive manufacturing (AM) methods of laser and electron beam (e-beam) powder-bed fusion (PBF) and directed-energy deposition (DED). It focuses on methods that monitor the component directly throughout the build process. This...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006576
EISBN: 978-1-62708-290-7
... Abstract This article provides a brief overview of additive manufacturing (AM) of tool steels via various AM technologies such as laser powder bed fusion, electron powder bed fusion, blown powder directed energy deposition, and binder jet AM. The discussion includes process overview and covers...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
... processes include binder jetting, ultrasonic additive manufacturing, directed-energy deposition, laser powder-bed fusion, and electron beam powder-bed fusion. The article presents a review of the literature and state of the art for copper alloy AM and features data on AM processes and industrial practices...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
..., with an emphasis on their principles of operation, key processing variables, and the influence of each source on the transfer of heat and material. Common energy sources used for metals AM processes, particularly powder-bed fusion and directed-energy deposition, are also discussed. Brief sections at...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006570
EISBN: 978-1-62708-290-7
... Abstract This article describes post-processing techniques for machining, finishing, heat treating, and deburring used to remove additive manufacturing (AM) metallic workpieces from a base plate and subsequent techniques to enhance printed workpieces. The AM processes include powder bed fusion...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006555
EISBN: 978-1-62708-290-7
... fusion, directed energy deposition, material extrusion, binder jetting, and sheet lamination. binder jetting directed energy deposition material extrusion material jetting powder bed fusion sheet lamination vat photopolymerization ADDITIVE MANUFACTURING (AM), popularly known as 3D...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006575
EISBN: 978-1-62708-290-7
... powder-bed fusion AM process. directed-energy deposition discretization elastoplastic response laser powder-bed fusion moving source analysis part-scale analysis thermomechanical modeling Additive manufacturing (AM) offers several advantages over traditional manufacturing...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006581
EISBN: 978-1-62708-290-7
... discusses various additive manufacturing (AM) technologies for processing titanium and its alloys. These include directed-energy deposition (DED), powder-bed fusion (PBF), and sheet lamination. The discussion covers the effect of AM on the microstructures of the materials deposited, static and mechanical...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006546
EISBN: 978-1-62708-290-7
... distribution. The second section covers polymer powder-bed sintering/ fusion, discussing the different levels of scale used to address modeling and the impact of process settings: thermodynamics at the powder-bed surface, consolidation of adjacent particles in the fusion process, and fusion and molecular-level...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006568
EISBN: 978-1-62708-290-7
... micro-X-ray computed tomography in studying powder porosity characteristics nondestructively. bulk density carney flow test hall flow test particle morphology powder flowability shear properties Powder-bed additive manufacturing (AM) processes, such as laser powder-bed fusion...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005727
EISBN: 978-1-62708-171-9
... Abstract This article discusses three types of powder-feeder systems that are commonly used throughout the thermal spray (TS) industry: gravity-based devices, rotating wheel devices, and fluidized-bed systems. It provides information on the various mechanical methods for producing powders...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006557
EISBN: 978-1-62708-290-7
... are largely split between two main processes: powder-bed fusion (PBF) processes and directed-energy deposition (DED). In PBF processes, a thin layer of powder is evenly distributed across a build platform while a focused energy source, such as a laser or electron beam, selectively fuses powder to a...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005632
EISBN: 978-1-62708-174-0
... discussion on the material combinations, characteristics of laser cladding, and the comparison with arc cladding. It reviews the characteristics and applications of near-net shape processing and explains the process involved in powder bed methods and direct powder methods. arc cladding direct powder...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003043
EISBN: 978-1-62708-200-6
... Abstract The structural efficiency of a composite structure is established by its joints and assembly. Adhesive bonding, mechanical fastening, and fusion bonding are three types of joining methods for polymer-matrix composites. This article provides information on surface treatment and the...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006582
EISBN: 978-1-62708-290-7
... that highlight these capabilities include a heat duct assembly that consolidated many rolled and welded Inconel 718 sheet parts for the HTF7000 engine, with a cost reduction twice that of the traditionally manufactured part ( Ref 1 ). Powder-bed fusion processes have been used for fabricating advanced...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006007
EISBN: 978-1-62708-172-6
... shows important application factors. Fig. 7 Fusion-bonded epoxy powder must be stored in a dry, controlled-temperature environment. Dry compressed air (−40 °C, or −40 °F, dewpoint) in the fluidized bed removes moisture from recycled powder. Electrostatic spray application is the normal pipe...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006569
EISBN: 978-1-62708-290-7
..., such as prototyping with printed gypsum ( Ref 6 ) and plastic powder shaping with HP’s binder jet/powder bed fusion hybrid system ( Ref 7 ), this article focuses on binder-jetting technologies that produce metal artifacts either directly or indirectly. The intent is not to avoid discussing binder...