Skip Nav Destination
Close Modal
By
Lucas W. Koester, Leonard J. Bond, Peter C. Collins, Hossein Taheri, Timothy Bigelow
Search Results for
powder size distribution
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1026
Search Results for powder size distribution
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006567
EISBN: 978-1-62708-290-7
... Fig. 3 Chemical and electrochemical methods of powder production. Source: Ref 4 Particle Sizing The particle size distribution (PSD) is widely considered to be one of the most important powder characteristics for additive manufacturing, and a number of particle sizing techniques...
Abstract
This article provides an overview of the general methods of metal powder production. It details the primary methods for particle sizing used in additive manufacturing: sieving, laser diffraction and scattering, and digital image analysis. Methods of interpreting and understanding particle size distribution (PSD) data are presented, with an emphasis on the differences between count- and volume-based PSDs. The article then outlines practices for both qualitative and quantitative assessment of particle morphology.
Image
Published: 15 June 2020
Fig. 6 Change in powder size distribution of Inconel 718 powders after different build cycles. Source: Ref 51
More
Image
Published: 30 September 2015
Fig. 13 Particle size distribution measured by Microtrac in some Alcoa powder grades (grade 130/2 is by sonic sieve method)
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006094
EISBN: 978-1-62708-175-7
... to a suitable maximum particle size, blending the powder to homogenize powder size distribution, loading powder into containers, vacuum outgassing and sealing the containers, and consolidating the powder to full density. PM superalloys include Rene 95, IN-100, LC Astroloy, Udimet 720, N18, ME16, RR1000, Rene...
Abstract
Superalloys are predominantly nickel-base alloys that are strengthened by solid-solution elements including molybdenum, tungsten, cobalt, and by precipitation of a Ni 3 (Al, Ti) type compound designated as gamma prime and/or a metastable Ni 3 Nb precipitate designated as gamma double prime. This article provides a discussion on the conventional processing, compositions, characteristics, mechanical properties, and applications of powder metallurgy (PM) superalloys. The conventional processing of PM superalloys involves production of spherical prealloyed powder, screening to a suitable maximum particle size, blending the powder to homogenize powder size distribution, loading powder into containers, vacuum outgassing and sealing the containers, and consolidating the powder to full density. PM superalloys include Rene 95, IN-100, LC Astroloy, Udimet 720, N18, ME16, RR1000, Rene 88DT, PA101, MERL 76, AF2-1DA, Inconel 706, AF115, and KM4. The article reviews specialized PM superalloy processes and technical issues in the usage of PM superalloys.
Image
Published: 30 September 2015
Fig. 3 Cumulative particle size distributions for several injection molding powders show similar features in the shapes of their distributions. Also shown is the determination of the three key particle sizes ( D 10 , D 50 , and D 90 ) and their estimation from the 10, 50, and 90% points
More
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Image
in Binder Jet Additive Manufacturing of Biomaterials
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Image
in Development of Alloy Powders for Biomedical Additive Manufacturing
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 8 (a) Scanning electron microscopy image of Zr-1Mo alloy powder fabricated by electrode induction-melting inert gas atomization. (b) Powder size distribution. Source: Ref 25
More
Image
Published: 12 September 2022
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005731
EISBN: 978-1-62708-171-9
... materials. This article discusses various characterization methods for powders. Topics discussed include: methods for determining particle size and/or size distribution; powder and coating stoichiometry; particle chemistry; and phase analysis by x-ray diffraction. This article discusses the characterization...
Abstract
The raw materials used in thermal spray processes are a critical parameter in the finished coating because the variations in their size, morphology, chemistry, and phase composition can significantly impact coating properties. Therefore, it is important to test and characterize the raw materials. This article discusses various characterization methods for powders. Topics discussed include: methods for determining particle size and/or size distribution; powder and coating stoichiometry; particle chemistry; and phase analysis by x-ray diffraction. This article discusses the characterization of thermal spray powders which involves the determination of particle size and/or size distribution and phase analysis by x-ray diffraction. It provides information on preferential volatilization and rapid solidification that influence compositional differences. Wet chemical methods, spectographic analysis, and atomic absorption spectrometry are also discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006907
EISBN: 978-1-62708-392-8
.... The particle size distribution significantly depends on the input energy of the plasma, due to the change in the droplet formation mechanism ( Ref 17 ). Recently, different types of metal powders involving titanium, tantalum, stainless steel, or Co-Cr-Mo have been produced by PREP for biomedical applications...
Abstract
Additive manufacturing (AM) techniques include powder-bed fusion (PBF), directed-energy deposition, binder jetting (BJ), extrusion-based desktop, vat photopolymerization, material jetting, and sheet lamination. The development of suitable powders for AM is a challenging task because of critical design parameters including chemical composition, flowability of powders, and melt surface tension. This article explains the fabrication methods of metal and novel alloy powders for medical applications. The development of zirconium alloy powder for laser-PBF is introduced as a case study.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006115
EISBN: 978-1-62708-175-7
... equilibrium and crossflow separation. Classification methods are used to exclude certain powder sizes from a powder distribution and to obtain particular powder distributions. For example, sieving methods are used to obtain particular powder distributions and to obtain narrow size ranges of a powder...
Abstract
This article summarizes sampling of powders, which includes the sampling of stored material and flowing streams, sample reduction and evaluation, and weight of sample required. It also summarizes the classification of powders. Classifiers are divided into two categories: counterflow equilibrium and crossflow separation. Classification methods are used to exclude certain powder sizes from a powder distribution and to obtain particular powder distributions. For example, sieving methods are used to obtain particular powder distributions and to obtain narrow size ranges of a powder. The article summarizes the sieving methods for powders. The sieving methods include hand sieving, machine sieving, manual wet sieving, air jet sieving, sonic sifter, wet sieving by machine, the Seishin robot sifter, automated systems, and ultrasonic machine sieving. The article outlines the sieve types and the process variables of the sieving process. An appendix reviews dispersion of powders in liquids.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006096
EISBN: 978-1-62708-175-7
... Abstract Particle size and size distribution have a significant effect on the behavior of metal powders during their processing. This article provides an overview of the sample preparation process for particle size measurement, which is a key step in the measurement of particle size...
Abstract
Particle size and size distribution have a significant effect on the behavior of metal powders during their processing. This article provides an overview of the sample preparation process for particle size measurement, which is a key step in the measurement of particle size distributions. Common particle size measuring techniques discussed in this article include sieve analysis, quantitative image analysis, laser diffraction, sedimentation methods, aerodynamic time-of-flight method, electrical zone sensing, and photon correlation spectroscopy. The advantages and disadvantages of these methods are reviewed.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003185
EISBN: 978-1-62708-199-3
... Abstract This article focuses on the significant fundamental powder characteristics, which include particle size, particle size distribution, particle shape, and powder purity, followed by an overview of general and individual powder production processes such as mechanical, chemical...
Abstract
This article focuses on the significant fundamental powder characteristics, which include particle size, particle size distribution, particle shape, and powder purity, followed by an overview of general and individual powder production processes such as mechanical, chemical, electrochemical, atomizing, oxide reduction, and thermal decomposition processes. It also covers the consolidation of powders by pressing and sintering, as well as by high density methods. Further emphasis is provided on the distinguishing features of powders, their manufacturing processes, compacting processes, and consolidated part properties. In addition, a glossary of powder metallurgy terms is included.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006056
EISBN: 978-1-62708-175-7
... Particle size and distribution are important considerations for raw materials and graded powder blends. Table 1 provides a summary of underlying principles and size ranges for ASTM standard methods of particle sizing ( Ref 1 ). Selection of the method depends on the type of powder and whether...
Abstract
Quality control of cemented carbides includes the evaluation of physical and chemical properties of constituent raw material powders, powder blends/formulations, green compacts, and fully dense finished product. This article provides a summary of the underlying principles and size ranges for the American Society for Testing and Materials (ASTM) standard methods of particle sizing and distribution. It presents the methods used to analyze the chemical composition of cemented carbide materials in a tabular form. The article also presents information on microstructural evaluation and physical and mechanical property evaluation of cemented carbides.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006084
EISBN: 978-1-62708-175-7
... such as the average particle size, particle size distribution or screen analysis, particle shape, chemical composition, and microstructure. atomization average particle size centrifugal atomization chemical composition gas atomization gas-atomized powders metal powders microstructure oil atomization...
Abstract
Atomization is the dominant method for producing metal and prealloyed powders from aluminum, brass, iron, low-alloy steels, stainless steels, tool steels, superalloys, titanium alloys, and other alloys. The general types of atomization processes encompass a number of industrial and research methods. This article describes the key process variables and production factors for the industrial methods: two-fluid, centrifugal, vacuum or soluble-gas, and ultrasonic atomization. It also reviews the effect of atomization methods and process variables on key powder characteristics such as the average particle size, particle size distribution or screen analysis, particle shape, chemical composition, and microstructure.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
... of critical alloying components, which can also affect part performance by introducing residual strains and unexpected phase transformations. For binder jetting processes, the relative powder packing densities, powder size distributions, binder saturation, and binder composition have no direct analog...
Abstract
This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM processes include binder jetting, ultrasonic additive manufacturing, directed-energy deposition, laser powder-bed fusion, and electron beam powder-bed fusion. The article presents a review of the literature and state of the art for copper alloy AM and features data on AM processes and industrial practices, copper alloys used, selected applications, material properties, and where applicable, compares these data and properties to traditionally processed materials. The data presented and the surrounding discussion focus on bulk metallurgical processing of copper components. The discussion covers the composition and performance criteria for copper alloys that have been reported for AM and discusses key differences in process-structure-property relationships compared to conventionally processed material. The article also provides information on feedstock considerations for copper powder handling.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006465
EISBN: 978-1-62708-190-0
... have built-in powder sieving and characterization to help minimize this risk of partially fused particles from previous builds affecting the powder size distributions or spreading operations. Cracking Crack formation can often be avoided by careful tuning of process parameters but can still...
Abstract
Additive manufacturing (AM) is the process of joining materials to make parts from three-dimensional (3D) model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies. This article discusses various defects in AM components, such as porosity, inclusions, cracking, and residual stress, that can be avoided by using vendor recommended process parameters and approved materials. It describes the development of process-structure-property-performance modeling. The article explains the practical considerations in nondestructive evaluation for additively manufactured metallic parts. It also examines nondestructive testing (NDT) inspection and characterization methods for each of the manufacturing stages in their natural order. The article provides information on various inspection techniques for completed AM manufactured parts. The various electromagnetic and eddy current techniques that can be used to detect changes to nearsurface geometric anomalies or other defects are also discussed. These include ultrasonic techniques, radiographic techniques, and neutron imaging.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005732
EISBN: 978-1-62708-171-9
..., and overall powder size distribution are just a few reasons why powders can have similar chemistry and spray parameters, but different coating microstructures, deposition rates, and performance. A good example is the basic microstructural differences when spraying nickel chromium/chromium carbide powder...
Abstract
This article describes the process of selecting an optimum coating and material system for a specific application. It reviews critical coating functions that influence the coating selection process, and presents some application success stories. The article explores the benefits of thermal spray coatings and functions they provide. It also presents key references from various National Thermal Spray Conference, United Thermal Spray Conference, and International Thermal Spray Conference Proceedings from 2006 through 2012.
1