Skip Nav Destination
Close Modal
Search Results for
powder premix
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 99 Search Results for
powder premix
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006088
EISBN: 978-1-62708-175-7
... Abstract Blending of powders is defined as the thorough intermingling of powders of the same nominal composition. Premixing is the preparation of a uniform mixture of two or more components. This article provides information on the blending and premixing variables required to produce adequate...
Abstract
Blending of powders is defined as the thorough intermingling of powders of the same nominal composition. Premixing is the preparation of a uniform mixture of two or more components. This article provides information on the blending and premixing variables required to produce adequate results in the powder mixture. It describes the effects of metal powder characteristics on blending and mixing: particle size, shape, density, and surface features. The article also provides information on the equipment, tumble-type blenders, and low-shear agitated-type blenders used for blending and premixing solids.
Image
Published: 30 September 2015
Image
Published: 01 December 1998
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006083
EISBN: 978-1-62708-175-7
... often results in microlaminations within a part. The densities of several common ferrous powders and typical premix additives are listed in Table 1 . Graphite and lubricants have the lowest density, thus they negatively affect the PFD. Shown in Fig. 1 is the effect of graphite and lubricant additions...
Abstract
Warm compaction uses both powder heating and die heating to effect higher component densities, whereas warm die compaction uses only die heating to achieve higher density. This article explains the influences of green and sintered properties and pore-free density during compaction of materials. It provides information on the concept of pore-free density and process considerations: die heating and powder heating. The article concludes with a review of the tooling design for warm compaction.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006015
EISBN: 978-1-62708-172-6
... systems, pigments, extenders, and additives. The basic process flow for the manufacture of powder coatings consists of premix, extrusion, grinding, and packing. The article also provides information on application of powder coatings, including pretreatment, deposition, and curing as well...
Abstract
Powder coatings are widely used by manufacturers as a finish of choice to enhance the appearance and performance of their products. This article begins with a discussion on advantages and disadvantages of powder coatings. It describes the selection of coating-types and uses of powder coatings in appliance industries, furniture industries, computer industries, fixture industries, architectural industries, automotive industries, agriculture and construction equipment industries, recreational equipment industries, and general industries. Powder coating formulations consist of binder systems, pigments, extenders, and additives. The basic process flow for the manufacture of powder coatings consists of premix, extrusion, grinding, and packing. The article also provides information on application of powder coatings, including pretreatment, deposition, and curing as well as on troubleshooting, trends and challenges for the powder coatings.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006103
EISBN: 978-1-62708-175-7
... ) are used as free-machining agents for PM steels. They are most frequently introduced as fine powder to powder premixes, but sulfur and manganese sulfide are also available as prealloyed powders ( Ref 30 , 31 , 32 ). Sulfur and molybdenum disulfide can have strong effects on the dimensional change...
Abstract
Machinability is more important in extending the applications of powder metallurgy (PM). This article provides an overview of the machining process and machinability measurement of PM steels. It discusses various approaches to improve machinability, including the closure of porosity, green machining, presintering, microcleanliness improvement, free-machining additives, microstructure modification, and improvements in tool materials. The effects of free-machining agents on machinability and the sintered properties of PM steels are also reviewed.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006081
EISBN: 978-1-62708-175-7
... widely used materials for ferrous powder metallurgy. The article provides information on the properties and applications of these powders. It also includes an overview of diffusion alloying, basics of admixing, and bonded premixes. carbonyl iron powder diffusion alloying diffusion bonding...
Abstract
This article briefly reviews the production methods and characteristics of plain carbon and low-alloy water-atomized iron and steel powders, high-porosity iron powder, carbonyl iron powder, and electrolytic iron powder. It emphasizes on atomized powders, because they are the most widely used materials for ferrous powder metallurgy. The article provides information on the properties and applications of these powders. It also includes an overview of diffusion alloying, basics of admixing, and bonded premixes.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006106
EISBN: 978-1-62708-175-7
...) applications. Bronze powders are used as press-ready elemental premixed powders, partially prealloyed powders, or fully prealloyed powders. Part design and cost considerations usually guide the selection of the specific powder type. Brass and nickel-silver powders are normally supplied as press-ready fully...
Abstract
Bronze and brass alloys are two key classes of materials in copper-base powder metallurgy applications. They are often compacted using mechanical or hydraulic pressing machines. This article provides an overview of the powder pressing process, providing information on the powder properties of bronze and brass and the roles of lubricant and compaction dies in the pressing process. It discusses the structural defects that originate during the compaction process. The article also describes the major factors that influence the sintering response in bronze, prealloyed bronze, brass, and nickel-silver.
Image
Published: 30 September 2015
Fig. 3 Alloy distribution. (a) Regular premix. (b) Segregation-free premix with powder binder and bleeding
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006086
EISBN: 978-1-62708-175-7
... of useful particles size and world production of different melt-atomized alloys. Source: Ref 1 Fig. 2 Some ranges of useful particle size for different applications of metal powders. Source: Ref 2 Another article in this Volume, “Blending and Premixing of Metal Powders and Binders...
Abstract
Various powder production processes allow precise control of the chemical composition and physical characteristics of powders and allow tailoring of specific attributes for targeted applications. Metal powders are produced by either mechanical methods or chemical methods. The commonly used mechanical methods include water and gas atomization, milling, mechanical alloying, and electrolysis. Some chemical methods include reduction of oxides. This article provides information on the reliable techniques for powder characterization and testing to evaluate the chemical and physical properties of metal powders, both as individual particles and in bulk forms.
Image
Published: 01 January 2005
Fig. 9 The RCC process flow. (1) Wax pattern. (2) Shell is built on the wax pattern by dipping in ceramic slurries. (3) The wax is then melted off, leaving a ceramic container. (4) The ceramic shell is filled with metal powder and placed in a metal can. The remaining volume of the can
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006032
EISBN: 978-1-62708-175-7
... and powder during the compaction step. The powder and tooling are typically heated between 130 and 150 °C (260 and 300 °F). In order for the powder premix to perform at these temperatures, proprietary lubricant systems have been developed that can withstand the higher die temperatures in warm compaction...
Abstract
This article describes several factors, which help in determining the compressibility of metal powders: particle shape, density, composition, hardness, particle size, lubrication, and compacting. It discusses the uses of annealing metal powders and describes compressibility testing of the powders. The article details green strength and its mechanism and the variables affecting the strength. It also discusses two test methods for determining the green strength: the Rattler test and the transverse bend test.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006092
EISBN: 978-1-62708-175-7
..., namely, elemental irons and iron compounds, used as fortificants. Common elemental iron powders such as plain pure iron powders, and common iron compounds such as ferrous sulfate used in food fortifications, are reviewed. The article contains tables that list the food chemical codex requirements...
Abstract
The food-based approaches are considered important sustainable strategies for preventing iron deficiency. The success of a food fortification program depends on the choice of food vehicles and the choice of iron fortificants, that is, iron sources. This article discusses iron sources, namely, elemental irons and iron compounds, used as fortificants. Common elemental iron powders such as plain pure iron powders, and common iron compounds such as ferrous sulfate used in food fortifications, are reviewed. The article contains tables that list the food chemical codex requirements and the physical and chemical properties of commercial food-grade elemental irons.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003135
EISBN: 978-1-62708-199-3
... conductivity. Typical applications include brushes for motors and generators and moving parts for rheostats, switches, and current-carrying washers. Bronze P/M Parts Powder metallurgy bronzes typically originate as premixes consisting of elemental copper and tin powders plus 0.5 to 0.75% dry organic...
Abstract
This article discusses the characteristics, properties, and production methods of copper powders and copper alloy powders. Bulk of the discussion is devoted to production and applications of powder metallurgy (P/M) parts, including pure copper P/M parts, bronze P/M parts, brass and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001728
EISBN: 978-1-62708-178-8
... require uniform and reproducible vaporization of the sample. Uniformity and reproducibility result from mixing powdered samples with some combination of powdered graphite, carriers, and buffers. The powdered graphite promotes a smooth burn. The carrier contributes to rapid vaporization of the trace...
Abstract
This article discusses the general principles, optical systems, and emission sources of optical emission spectroscopy for elemental analysis. Changes in the energy of the valence or outer shell electrons result in the atomic lines used in emission spectroscopy. Each possible combination of electron configurations produces a spectroscopic term that describes the state of the atom. Atomic emission is analytically useful only to the extent that the emission from one atomic species can be measured and its intensity recorded independent of emission from other sources. Emission sources are often designed to minimize molecular emission. Each of the four types of emission sources; arcs, high-voltage sparks, glow discharges, and flames; has a set of physical characteristics with accompanying analytical assets and liabilities. The article also discusses the applications of each type of emission source.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009073
EISBN: 978-1-62708-177-1
... lapping with low speed and low pressure. A 0.05 μm deagglomerated alumina suspension (5 g alumina powder to 1 L distilled water) applied to a nonnap cloth or rubber pad is used for this final step. A premixed 0.05 μm deagglomerated alumina suspension (purchased in suspension) diluted with distilled water...
Abstract
Rough grinding and polishing of specimens are required to prepare fiber-reinforced composite samples for optical analysis. This article discusses the consumables, process variables, and the equipment that influence the sample preparation procedure. It describes the hand and automated grinding methods. The article summarizes the rough and final polishing steps for both hand and automated techniques. Common artifacts that may be created during grinding and polishing steps of composite samples are reviewed. These include scratches, fiber pull-out, matrix smears, streaks, erosion of different phases, and fiber and sample edge rounding and relief.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006138
EISBN: 978-1-62708-175-7
... as a hardener in the copper, making bronze stronger and harder when compared to pure copper. Bronze powders are commonly supplied in three different forms: fully prealloyed, partially alloyed, and premixed. Each material has distinct properties. These differences assist in choosing the powder type depending...
Abstract
Selection of the process steps used, powder chosen, and lubricant choice have marked effects on the quality of a sintered component. This article describes the alloy composition, mechanical and structural properties, processing routes, and advantages of the common members of the copper alloy family, namely, pure copper, brass, and bronze, which all aid in the selection of the suitable material for structural and bearing applications. It outlines the structural applications of nickel silver alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003112
EISBN: 978-1-62708-199-3
...-density ferrous P/M parts via a single compaction process. The process utilizes heated tooling and powder during the compaction step. The powder and tooling are typically heated between 130 and 150 °C (260 and 300 °F). In order for the powder premix to perform at these temperatures, a proprietary...
Abstract
Iron powders are the most widely used powder metallurgy (P/M) material for structural parts. This article reviews low to medium density iron and low-alloy steel parts produced by the pressing and sintering technology. It explains different powder production methods, including Hoeganaes process, Pyron process, atomization of liquid metal, thermal decomposition and the electrodeposition process for carbonyl and electrolytic iron powders. It describes the types of compaction and sintering, explaining their effects of processing with designations. Further, the article deals with the mechanical and physical properties of ferrous P/M materials, which may depend on certain factors, namely microstructure, porosity, density, infiltration, re-pressing, chemical composition, and heat treatment.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006100
EISBN: 978-1-62708-175-7
... Abstract Friction materials are the components of a mechanism that converts mechanical energy into heat upon sliding contact. This article discusses the selection criteria, manufacturing process, and applications of friction powder metallurgy materials. It provides information...
Abstract
Friction materials are the components of a mechanism that converts mechanical energy into heat upon sliding contact. This article discusses the selection criteria, manufacturing process, and applications of friction powder metallurgy materials. It provides information on the manufacturing process of powder metallurgy friction materials through a process of mixing/blending, compacting, and sintering. The final machining that they undergo, to ensure that they meet dimensional specifications, is also discussed.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006101
EISBN: 978-1-62708-175-7
...-treated premixes improve powder flow and die-filling characteristics during part manufacturing, which results in more consistent part sectional densities and improved control of part mass. Improved flow and die-fill uniformity result in reduced press cycle times and more consistency throughout the entire...
Abstract
This article summarizes the general classification, mechanical properties, and applications of ferrous powder metallurgy (PM) materials for parts production. It discusses four principal ferrous PM alloy types: admixed elemental alloys, diffusion alloys, prealloys, and hybrid alloys. The article reviews the benefits and disadvantages as well as the effect of processing on the properties and material microstructure of these alloys. It contains tables that list the mechanical properties of various iron-copper and copper steels.
1