Skip Nav Destination
Close Modal
Search Results for
porous coatings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 592 Search Results for
porous coatings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005656
EISBN: 978-1-62708-198-6
... Abstract Porous coatings are used in the field of joint replacement, particularly in cementless total hip/knee arthroplasty. This article reviews the offerings and biomaterial properties in orthopedic surgery for the contemporary class of highly porous metals. It describes the traditional...
Abstract
Porous coatings are used in the field of joint replacement, particularly in cementless total hip/knee arthroplasty. This article reviews the offerings and biomaterial properties in orthopedic surgery for the contemporary class of highly porous metals. It describes the traditional porous metals/coatings having an open-cell structure, high porosity, and a microstructure resembling that of the cancellous bone. The traditional porous metal/coating includes fiber-metal mesh, cobalt-chromium (CoCr) beads, cancellous-structured titanium, and plasma spray. The article discusses other porous metals/coatings that have been developed due to the limitations of traditional porous metals for numerous open-cell-structured metals, such as titanium-base foams and trabecular metals.
Image
in Biomedical Coatings Made by Thermal Spraying for Orthopaedic Joint Applications
> Thermal Spray Technology
Published: 01 August 2013
Fig. 2 Plasma-sprayed titanium porous coating: porosity 40 to 70%, pore size 100 to 800 μm. Courtesy of Eurocoating SpA
More
Image
Published: 01 June 2012
Fig. 1 Fiber-metal porous coating on femoral components for total hip arthroplasty. Courtesy of Zimmer Inc., Warsaw, IN
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
... alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials. biomedical orthopedic alloys cobalt-base alloys implantable surgical devices metallography microstructure porous coatings quality control stainless steels titanium...
Abstract
Metallography plays a significant role in the quality control of metals and alloys used in the manufacture of implantable surgical devices. This article provides information and data on metallographic techniques along with images showing the microstructure of biomedical orthopedic alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials.
Image
Published: 01 June 2012
Image
Published: 01 August 2013
Image
in Biomedical Coatings Made by Thermal Spraying for Orthopaedic Joint Applications
> Thermal Spray Technology
Published: 01 August 2013
Fig. 6 Solution-deposited hydroxyapatite (HA) coating onto porous CoCr-beaded surface on the backside of a tibia tray and femoral components for an artificial knee. Courtesy of Stryker Howmedica Osteonics
More
Image
Published: 01 June 2012
Fig. 12 High-powered micrograph of a highly porous surface coating representing a highly roughened version of the standard Porocoat. Courtesy of Depuy, Warsaw, IN
More
Image
Published: 01 June 2012
Fig. 13 High-powered micrograph of Stiktite, a porous titanium coating offered on a variety of orthopaedic implants. Courtesy of Smith and Nephew, Memphis, TN
More
Image
Published: 01 December 2004
Fig. 17 A scanning electron microscope image of a commercially pure titanium fiber metal pad on the surface of a porous coated hip implant
More
Image
Published: 01 June 2012
Fig. 11 Typical components found in an unassembled total hip replacement (THR) implant. It should be noted that this is one of many artificial joint designs used in THR arthroplasty. For example, implants secured by bone cements would not be porous coated. Similarly, the ultrahigh-molecular
More
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
... makes cast microstructures less sensitive to elevated-temperature anneals because recrystallization is not a concern, and only limited grain growth occurs. Surface modification involving the addition of sintered porous coatings ( Ref 21 ) to form so-called cementless implants is therefore more practical...
Abstract
This article reviews the concepts considered important for an understanding of the processes used for preparing cobalt-chromium alloy implants, the microstructures resulting from this processing, and the resulting material properties. The review includes solidification of alloys, diffusionless (martensitic) phase transformation as occurs with face-centered cubic to hexagonal close-packed transformation in cobalt-chromium alloys, and stacking faults and twins and their role in this transformation. It also discusses the strengthening mechanisms that are responsible for the mechanical properties of cast and wrought cobalt alloys. The article contains tables that list the commonly used cobalt alloys and their biomedical applications and chemical compositions. It discusses the mechanical and corrosion properties of cobalt alloys, and provides a description of the microstructure of cobalt alloys.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005741
EISBN: 978-1-62708-171-9
... of thermal spray coatings. The article focuses on plasma thermal spray, which is the technique most often used to make porous titanium and hydroxyapatite (HA) coatings, such as thermal spray titanium, thermal spray HA, solution-precipitated HA, thermal spray chromium oxide, and thermal spray chromium carbide...
Abstract
This article provides an overview of how thermal spray technology has adapted to meet the needs of the orthopaedic industry. It includes the challenges facing the development of artificial joints, substrate material selection criteria, thermal spray solutions, and clinical outcomes of thermal spray coatings. The article focuses on plasma thermal spray, which is the technique most often used to make porous titanium and hydroxyapatite (HA) coatings, such as thermal spray titanium, thermal spray HA, solution-precipitated HA, thermal spray chromium oxide, and thermal spray chromium carbide cermet coatings.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005654
EISBN: 978-1-62708-198-6
... and Ottersberg ( Ref 18 ) also provide further detail on these materials and give a description of the history of their use in surgery. In some applications, to achieve secure biomechanical fixation, porous-coated layers that spur tissue ingrowth are sometimes used, as described below. Though many different...
Abstract
This article describes mechanical/electrochemical phenomena related to in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF). The article presents the factors related to the use of surgical implants and their deterioration in the body environment, including biomedical aspects, chemical environment, and electrochemical fundamentals needed for characterizing CF and SCC. It provides a discussion on the use of metallic biomaterials in surgical implant applications, such as orthopedic, cardiovascular surgery, and dentistry. It addresses key issues related to the simulation of an in vivo environment, service conditions, and data interpretation. These include the frequency of dynamic loading, electrolyte chemistry, applicable loading modes, cracking mode superposition, and surface area effects. The article explains the fundamentals of CF and SCC, and presents the test findings from laboratory, in vivo, and retrieval studies.
Image
Published: 01 December 2004
Fig. 6 Proper sectioning of thermal spray coatings. (a) Sectioning of dense, nonfriable coatings. (b) Sectioning of porous, friable coatings. Source: Ref 9
More
Image
Published: 01 August 2013
Fig. 8 Microstructure of a cold-sprayed titanium coating on an aluminum substrate using nitrogen as the process gas. (a) Dense titanium coating. (b) Porous titanium coating for biomedical (prosthesis) applications. Source: Ref 18
More
Image
Published: 01 December 2004
Fig. 8 Proper encapsulation of thermal spray coatings. (a) Thermosetting encapsulation for dense, nonfriable coatings. Temperature: 140 °C (285 °F). Heat time: 4 to 6 min. Cool time: 2 min. (b) Room-temperature epoxy encapsulation with vacuum impregnation (25 in. mercury) for porous, friable
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004208
EISBN: 978-1-62708-184-9
... on these materials, when used for bone fracture fixation, is given by Tencer ( Ref 17 ). Shetty and Ottersberg ( Ref 18 ) also provide further detail on these materials and give a description of the history of their use in surgery. In some applications, to achieve secure biomechanical fixation, porous-coated layers...