Skip Nav Destination
Close Modal
By
George E. Totten, Eva Troell, Lauralice C.F. Canale, Rosa L. Simencio Otero, Xinmin Luo
Search Results for
polymer structure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1120 Search Results for
polymer structure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... crystal phases and structures in solid materials. failure analysis infrared spectroscopy nuclear magnetic resonance spectroscopy polymer structure thermal analysis X-ray diffraction FAILURE OF POLYMERIC materials is the result of a very complex process. This article introduces procedures...
Abstract
This article presents tools, techniques, and procedures that engineers and material scientists can use to investigate plastic part failures. It also provides a brief survey of polymer systems and the key properties that need to be measured during failure analysis. It describes the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing crystal phases and structures in solid materials.
Image
Published: 15 May 2022
Fig. 8 Polymer structure. The spheres represent the repeating units of the polymer chain, not individual atoms. Source: Ref 8
More
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Image
Published: 01 November 1995
Image
Published: 01 November 1995
Fig. 1 Types of polymer structures possible for plastic materials. (a) Statistical aggregation. (b) Partially crystalline structure. (c) Spherical superstructure. (d) Block copolymer. (e) Main chain/liquid crystal polymer (ordered). (f) Fiber-filled polymer. Source: Ref 9
More
Image
Published: 01 February 2024
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003006
EISBN: 978-1-62708-200-6
... of this basic structure permits the engineers to understand which polymers may be acceptable for a certain application, and which may not. There are various possible classification schemes for polymers. Typical classification categories include polymerization process, chemical elements that make up the monomer...
Abstract
This article outlines the fundamentals of polymer science and emphasizes the aspects that are necessary and useful to applications of engineering plastics. The basic structure of polymers influences the properties of both polymers and the plastics made from them. An understanding of this basic structure permits the engineers to understand which polymers may be acceptable for a certain application, and which may not. There are various possible classification schemes for polymers. Typical classification categories include polymerization process, chemical elements that make up the monomer, or crystalline versus noncrystalline structure. The article describes the various aspects of chemical structure that are important to an understanding of polymer properties and, thus, affect eventual end uses. It discusses different types of names assigned to polymers. The article details the aspects of polymer structure and examines the properties of polymers and the way they are altered by structure.
Book Chapter
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007003
EISBN: 978-1-62708-450-5
... of the linear polymeric structure. Although it is possible to produce polymers by such processes, this approach is not industrially used to prepare the PAG copolymers used to formulate aqueous PAG-based quenchants. To aid in communication, specification writing, purchasing, and so on, it is recommended...
Abstract
This article presents the fundamentals and nomenclature of polymer quenchants and provides a detailed discussion on the polymers used for quenching formulation. The article describes the effect of polymer structure on the quenching mechanism. It also presents the factors affecting polymer quenchant performance. The article details the use of polymer quenchants for intensive quenching and then focuses on the wire patenting processes and polymer quenchant analysis. The article presents the application of polymer quenchants for induction hardening. Finally, it provides details on cooling curve analysis of polymer quenchants.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003453
EISBN: 978-1-62708-195-5
... polymer (FRP)-reinforced concrete behavior that depends on flexural, shear, or axial failures. Surface preparation procedures for rehabilitation techniques of reinforced concrete structures using bonded FRP materials are also discussed. The article provides information on the applications...
Abstract
Rehabilitation is the process of repairing or modifying reinforced concrete structures to a desired useful condition. This article describes the operational steps for the structural assessment of reinforced concrete structures. It discusses the classification of composite materials reinforcing systems for strengthening reinforced concrete structures, such as shop-manufactured and field-manufactured structures. The article reviews the materials property requirements for designing reinforcing systems to strengthen the reinforced concrete structures. It discusses the fiber-reinforced polymer (FRP)-reinforced concrete behavior that depends on flexural, shear, or axial failures. Surface preparation procedures for rehabilitation techniques of reinforced concrete structures using bonded FRP materials are also discussed. The article provides information on the applications of rehabilitation of concrete structures. It explains data recording and acceptance criteria for rehabilitation of concrete structures with composite materials.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002464
EISBN: 978-1-62708-194-8
... assumed by the polymer chains. Plastics are polymeric materials that have been compounded with fillers, colorants, reinforcing agents, thermal stabilizers, plasticizers, and other modifying agents or additives. Table 1 shows the structures and transition temperatures of selected polymers. This article...
Abstract
This article discusses the most fundamental building-block level, atomic level, molecular considerations, intermolecular structures, and supermolecular issues. It contains a table that shows the structures and lists the properties of selected commodity and engineering plastics. The article describes the effects of structure on thermal and mechanical properties. It reviews the chemical, optical, and electrical properties of engineering plastics and commodity plastics. An explanation of important physical properties, many of which are unique to polymers, is also included. The factors that must be considered when processing engineering thermoplastics are discussed. These include melt viscosity and melt strength; crystallization; orientation, die swell, shrinkage, and molded-in stress; polymer degradation; and polymer blends.
Image
Published: 15 May 2022
Fig. 13 Mer chemical structure of representative hydrocarbon thermoplastic polymers. (See Table 6 for glass transition temperatures.)
More
Image
Published: 15 May 2022
Image
Published: 15 May 2022
Fig. 17 Mer chemical structure of representative thermoplastic polymers for high-temperature service
More
Image
in Effects of Composition, Processing, and Structure on Properties of Engineering Plastics
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 1 Structures of selected commodity and engineering plastics. Polymer chains are made up of the repeat units shown, joined end to end. Source: Ref 2 – 7
More
Image
Published: 01 January 2003
Image
Published: 01 January 2001
Fig. 5 Cost versus performance of various lightweight structural cores. PMI, polymethacrylimide; PP, polypropylene; PVC, polyvinyl chloride; PU, polyurethane; PS, polystyrene
More
Image
Published: 15 December 2019
Fig. 5 Molecular structures of some conjugated polymers; a commonality among all structures is alternating single and double bonds between carbon atoms. Adapted from Ref 35
More
1