Skip Nav Destination
Close Modal
Search Results for
polymer removal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 920
Search Results for polymer removal
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1997
Fig. 7 SGC process: (1) photomask exposure, (2) removal of uncured polymer, (3) coating with wax, (4) milling a flat surface, (5) coating the next polymer layer
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001225
EISBN: 978-1-62708-170-2
... Abstract Molten salt baths are anhydrous, fused chemical baths used at elevated temperatures for a variety of industrial cleaning applications. This article discusses their applications in paint stripping, polymer removal, casting cleaning, glass removal, and plasma/flame spray removal...
Abstract
Molten salt baths are anhydrous, fused chemical baths used at elevated temperatures for a variety of industrial cleaning applications. This article discusses their applications in paint stripping, polymer removal, casting cleaning, glass removal, and plasma/flame spray removal. It provides an overview of the basic design and safety considerations of the salt bath equipment and describes the environmental impact of molten salt bath cleaning.
Image
in Failures of Cranes and Lifting Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 14 Photographs of typical sections of wire rope. The polymer sleeve was removed due to abrasion and wear, exposing the crown of the wires; plastic damage was observed along the crowns of the wires.
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
... Abstract This article presents the mechanisms of polymer wear and quantifies wear in terms of wear rate (rate of removal of the material). Interfacial and bulk wear are discussed as well as a discussion on the wear study of "elastomers," "thermosets," "glassy thermoplastics...
Abstract
This article presents the mechanisms of polymer wear and quantifies wear in terms of wear rate (rate of removal of the material). Interfacial and bulk wear are discussed as well as a discussion on the wear study of "elastomers," "thermosets," "glassy thermoplastics," and "semicrystalline thermoplastics." The article also discusses the effects of environment and lubricant on the wear failures of polymers. It presents a case study on considering nylon as a tribological material and failure examples, explaining wear resistance of polyurethane elastomeric coatings and failure of an acetal gear wheel.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006380
EISBN: 978-1-62708-192-4
... Abstract This article provides a broad overview of sliding and adhesive wear, its processes, and its control, with special attention to three general classes of materials: metals, ceramics, and polymers. It discusses the ways in which materials can be damaged and removed during sliding contact...
Abstract
This article provides a broad overview of sliding and adhesive wear, its processes, and its control, with special attention to three general classes of materials: metals, ceramics, and polymers. It discusses the ways in which materials can be damaged and removed during sliding contact. The article explains the physical and chemical nature of sliding surfaces. It presents wear equations, design criteria, and criteria for selection of materials. The article also describes the factors that affect wear performance of hybrid sliding systems. It concludes by providing general guidelines to prevent the sliding and adhesive wear in metals, polymers, and ceramics.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003690
EISBN: 978-1-62708-182-5
... are also discussed. The article illustrates the adhesion of polymer coatings and the thermal spray process used to remove lead-base paint. It provides information on the specifications, standardization, and guidelines for thermal spray applicators. thermal spray coatings microstructure coating...
Abstract
This article provides an overview of thermal spray processes. It describes the microstructural character of thermal spray coatings as well as the criteria for coating selection. The optimization, parameterization, and surface preparation and treatments for the thermal spray coatings are also discussed. The article illustrates the adhesion of polymer coatings and the thermal spray process used to remove lead-base paint. It provides information on the specifications, standardization, and guidelines for thermal spray applicators.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
... the mechanisms of polymer wear and to quantify wear in terms of wear rate (rate of removal of the material). This analysis is restricted mostly to base polymers (with no fillers). Normally, polymers used in tribological applications are subjected to sliding against hard surfaces such as metals. A polymer-polymer...
Abstract
Plastics or polymers are used in a variety of engineering and nonengineering applications where they are subjected to surface damage and wear. This article discusses the classification of polymer wear mechanisms based on the methodologies of defining the types of wear. The first classification is based on the two-term model that divides wear mechanisms into interfacial and bulk or cohesive. The second is based on the perceived wear mechanism. The third classification is specific to polymers and draws the distinction based on mechanical properties of polymers. In this classification, wear study is separated as elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The article describes the effects of environment and lubricant on the wear failures of polymers. It presents a case study on nylon as a tribological material. The article explains the wear failure of an antifriction bearing, a nylon driving gear, and a polyoxymethylene gear wheel.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001319
EISBN: 978-1-62708-170-2
... application. Three mechanisms contribute to improvement in the adhesion of two components and the adhesion of coatings: Removal of surface contaminants and weakly bound polymer layers Enhancement of wettability through incorporation of polar groups that facilitate spontaneous spreading of adhesive...
Abstract
This article provides an overview of plasma surface treatments for plastics. It covers the equipment and methods used in plasma processing, providing detailed explanations of the plasma discharge reactions and how they affect surface state and topography. It also provides information on contamination removal, plasma surface modification, plasma-induced grafting, and plasma film deposition.
Image
Published: 30 November 2018
) After 60 s, polymer starts to redissolve into solution. (e) After 75 s, film has completely redissolved and fneat removal is entirely by convection. Courtesy of Houghton International
More
Image
Published: 01 June 2016
) After 60 s, polymer starts to redissolve into solution. (f) After 75 s, film has completely redissolved and heat removal is entirely by convection. Courtesy of Houghton International
More
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006556
EISBN: 978-1-62708-290-7
... that is subsequently debound (had polymer removed) and sintered (heat treated to bond the metal powder particles). Indirect Additive Manufacturing in the Casting of Precious Metals Early Use of Additive Manufacturing in the Casting of Precious Metals Many precious metal articles are made by investment...
Abstract
The additive manufacturing technologies in the casting of precious metals are divided into two groups: indirect metal methods and direct metal methods. Besides providing a process overview of both of these methods, the focus of this article is on the characteristics, process steps, applications, and advantages of direct metal methods, namely laser melting, material extrusion, binder jetting, material jetting, and vat photopolymerization methods.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
..., the more rapid crystallization that occurs in the transcrystalline layer is subject to continued partial slow crystallization after removal from the mold. Therefore, the stress distribution in a molded semicrystalline polymer can be complex in terms of depth from the mold surface, the morphology obtained...
Abstract
Engineering plastics, as a general class of materials, are prone to the development of internal stresses which arise during processing or during servicing when parts are exposed to environments that impose deformation and/or temperature extremes. Thermal stresses are largely a consequence of high coefficients of thermal expansion and low thermal diffusivities. Although time-consuming techniques can be used to analyze thermal stresses, several useful qualitative tests are described in this article. The classification of internal stresses in plastic parts is covered. The article describes the effects of low thermal diffusivity and high thermal expansion properties, and the variation of mechanical properties with temperature. It discusses the combined effects of thermal stresses and orientation that result from processing conditions. The article also describes the effect of aging on properties of plastics. It explains the use of high-modulus graphite fibers in amorphous polymers.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005862
EISBN: 978-1-62708-167-2
... hardening polymer quenching quenchants quenching quenching oils residual stress spray quenching steel water quenching INDUCTION HEATING for the hardening of steels has advantages from standpoint of quenching, because parts are individually processed in a controlled manner. This permits...
Abstract
Induction heating for hardening of steels has advantages from the standpoint of quenching because parts are individually processed in a controlled manner. This article provides information on the effect of agitation, temperature, hardening, residual stresses, and quenching media, on quenching. It also describes various quenching methods for steel induction heat treating, namely, spray quenching, immersion quenching, self or mass quenching, and forced air quenching. The article also reviews quench system design and quenchants and their maintenance.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006543
EISBN: 978-1-62708-290-7
... retardants and glass. Other feedstocks for polymer PBF include polypropylene, polyetheretherketone (PEEK), and polyetherketoneketone (PEKK). The attractive mechanical properties of these AM thermoplastics explain why PBF is widely used for polymeric functional prototyping and service parts. Polymer PBF...
Abstract
Powder bed fusion (PBF) of polymers is a collection of additive manufacturing processes that melt and fuse polymer in a powder bed. This article provides a complete suite of materials and processes involved in PBF of polymers. The discussion includes details of thermal and manufacturing issues, and safety, postprocessing, and finishing considerations, as well as of principal defects in PBF polymer parts and the mechanical properties of the parts produced by PBF. The article provides case studies on the applications of polymer PBF.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003013
EISBN: 978-1-62708-200-6
... are shredded and granulated to a flake size of 3.2 to 9.5 mm (0.13 to 0.38 in.), air classified to remove loosened paper/plastic labels and dirt, and washed with hot nonfoaming detergent solution in one or more stages. The crude polymer flake is rinsed again with fresh water to remove residual detergent...
Abstract
This article discusses postconsumer plastics recyclate quantities, the classification of plastics recycling into primary, secondary, tertiary, and quaternary categories, and how the life cycle of plastics is affected by recycling. The recycling processes of polyethylene terephthalate (PET), which accounts for the largest percentage of plastic recycling, high-density polyethylene (HDPE) plastics, the other large-volume plastic recyclate, as well as vinyl resins and polycarbonate resins are described. The life cycle of plastics has four phases: poly formation, part fabrication, product service, and disposal. Landfilling is still the primary method of final disposal, and incineration is another option, but recycling has become a viable alternative. The article presents a comparison between secondary and tertiary recycling.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004171
EISBN: 978-1-62708-184-9
...-wafer etchers are identified as 9600 in the fabrication unit layout ( Fig. 3 ). Corrosion is due to: Improper control of atmospheric passivation module (APM) process Decoupled source quartz (DSQ) photoresist-removal process Polymer corrosion due to mid-chamber wear Environmental effects...
Abstract
This article presents a detailed examination of corrosion at the various production stages of wafer fabrication. The corrosion issues related to batch metal-etch systems and single-wafer metal-etch systems are also discussed. The article provides a case study, which illustrates that the factors outside the normal processing of wafers or tool-specific problems can contribute to metal-line corrosion.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006044
EISBN: 978-1-62708-172-6
.... The article concludes with a description of the advances in the development of waterborne acrylic coatings for maintenance and protective applications. acrylic polymers acrylic resins glass transition temperature melamine-formaldehyde polymerization scanning electron microscopes solventborne...
Abstract
Acrylic coatings are one of the major generic classes of organic coatings and are prevalent in both architectural and industrial applications. This article provides information on the chemistry of acrylic polymers, the methods used in their manufacture, the relationship between structure and properties when they are formulated into coatings, and how they are being used in coatings. The main discussion points are the differences between solventborne and waterborne technologies and some of the challenges in formulating and applying waterborne acrylic coatings. The article describes the mechanism of film formation of acrylic latex polymers and its effect on final coating properties. It discusses the types of waterborne acrylic latex coatings based on chemical properties and based on applications such as primers, intermediate coats, topcoats, stains, and direct-to-substrate finishes. The article concludes with a description of the advances in the development of waterborne acrylic coatings for maintenance and protective applications.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002449
EISBN: 978-1-62708-194-8
... of the appropriate wavelength exposes the liquid, it rapidly polymerizes into a solid. A movable platform immersed in the photopolymer vat is initially positioned just at the liquid surface and then indexed down into the polymer, incrementing after each layer is created. At each increment of depth a liquid layer...
Abstract
Rapid prototyping (RP) is a field in manufacturing involving techniques/devices that produce prototype parts directly from computer-aided design models in a fraction of time. This article discusses the principles of RP and three major commercial processes, based on their layer creation method. These include selective cure layered processes, extrusion/droplet deposition processes, and sheet form fabricators. The article provides information on the three classes of RP, namely, voxel sequential volume addition, periphery cutting, and area sequential volume addition. It presents equations that represent build times for each of the three classes.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... of an immiscible polymer blend. A vacuum is often applied to aid in the removal of moisture/volatiles and degradation products. Finally, the degassing operation can be used to dry hygroscopic polymers during the extrusion process. Caution must be used in this case so that the polymer in question does not degrade...
Abstract
This article discusses technologies focused on processing plastic materials or producing direct tools used in plastics processing. The article focuses on extrusion and injection molding, covering applications, materials and their properties, equipment, processing details, part design guidelines, and special processes. It also covers the functions of the extruder, webline handling, mixing and compounding operations, and process troubleshooting. Thermoforming and mold design are covered. Various other technologies for polymer processing covered in this article are blow molding, rotational molding, compression molding, transfer molding, hand lay-up process, casting, and additive manufacturing.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006911
EISBN: 978-1-62708-395-9
... of polymeric materials, such variables as the countersurface material, sliding environment, surface roughness, and contact pressure can heavily impact the wear rate of the polymer itself, sometimes by several orders of magnitude. Unless the testing conditions are kept the same and reported in detail...
Abstract
Tribology is the study of contacting materials in relative motion and more specifically the study of friction, wear, and lubrication. This article discusses the classification and the mechanisms of friction, wear, and lubrication of polymers. It describes the tribological applications of polymers and the tribometers and instrumentation used to measure the tribological properties of polymers. The article discusses the processes involved in calculating the wear rate of polymers and the methods of characterization of the sliding interface. It provides information on the pressure and velocity limit of polymer composites and polymer testing best practices.
1