1-20 of 42 Search Results for

polymer electrolyte membrane fuel cells

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004136
EISBN: 978-1-62708-184-9
... Abstract This article describes the classification of fuel cells depending on the operating temperature and type of electrolytes used. This classification includes alkaline fuel cells, phosphoric acid fuel cells, polymer electrolyte membrane fuel cells (PEMFCs), molten carbonate fuel cells...
Book Chapter

By Mark C. Williams
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003602
EISBN: 978-1-62708-182-5
... Abstract This article describes the ideal performance of various low-temperature and high-temperature fuel cells that depends on the electrochemical reactions that occur between different fuels and oxygen. Low-temperature fuel cells, such as polymer electrolyte, alkaline, and phosphoric acid...
Image
Published: 01 January 2006
Fig. 4 Fuel cell system including auxiliary equipment. (a) Fuel cell power generation system incorporating fuel processor, fuel cell stack, and power conditioner. ATR, autothermal reforming; SMR, steam methane reforming; POX, partial oxidation; PEM, polymer electrolyte membrane; DFC, direct More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004135
EISBN: 978-1-62708-184-9
... or rechargeable batteries. Fuel cells are classified into five types: phosphoric acid fuel cell (PAFC), solid polymer electrolyte fuel cell, alkaline electrolyte fuel cell, molten carbonate fuel cell (MCFC), and solid oxide fuel cell. The article presents reactions that occur during charging and discharging...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006679
EISBN: 978-1-62708-213-6
... ) Determination of uranium and plutonium assays in nuclear fuel ( Ref 14 , 15 ) Electrochemical Cells The basic process of an electrochemical reaction requires an electrochemical cell comprised of two half cells with an electrode (cathode and anode) that are in a medium (electrolyte) that can conduct...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006895
EISBN: 978-1-62708-392-8
... matrices and membranes using phase separation and polymerization ( Ref 10 – 12 ). Phase separation and polymerization can be a desirable route to follow for the formation of nanofibers when the material in question is insoluble in organic solvents ( Ref 11 ). Although similar to the self-assembly method...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003684
EISBN: 978-1-62708-182-5
..., sources of variation in electrical potential on the metal surfaces must be considered. These include mill scale, metal impurities, localized strains on parts of the metal, junctures of dissimilar metals, movement of electrolytes, weld joints, concentration cells, and externally imposed currents. Some...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
... Abstract Polymer materials are key building blocks of the modern world, commonly used in packaging, automobiles, building materials, electronics, telecommunications, and many other industries. These commercial applications of polymeric materials would not be possible without the use...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003718
EISBN: 978-1-62708-182-5
... to the anode in proton receptor in any medium. Compare with desired changes in other properties or in mi- an electrolytic cell. acid. crostructure. The purpose of such changes may be, but is not con ned to, improvement antifouling. Intended to prevent fouling of un- base metal. (1) The metal present...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.9781627081825
EISBN: 978-1-62708-182-5
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007003
EISBN: 978-1-62708-450-5
... is designated in terms of molecular weight (MW) and degree of polymerization (DP). Molecular weight can be viewed as the total molecular weight of the simple monomer units in the polymer and can be calculated as: MW = Number of simple repeat units     × Molecular weight of a repeat unit...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005727
EISBN: 978-1-62708-171-9
... to 540 °C (1000 °F) Oxide ceramics—lanthanum (La 0.8 Sr 0.2 )0.98 MnO 3 (provided in mol%) Agglomerated and sintered High-purity Perovskite Used as an evaporation barrier on chromite-based solid oxide fuel cell (SOFC) interconnects and for catalysts and sensors Service up to 1500 °C (2730 °F...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006031
EISBN: 978-1-62708-172-6
.... Polymerization of Polyvinylidene Fluoride Polyvinylidene fluoride is the addition polymer of 1,1-difluoroethene, CH 2 =CF 2 , commonly known as vinylidene fluoride (abbreviated VDF or VF 2 ). It is produced by suspension or emulsion polymerization, but most frequently by emulsion polymerization. Vinylidene...
Book Chapter

By Paul J. Walsh
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0009241
EISBN: 978-1-62708-195-5
... and the ability to configure the material into a semipermeable membrane with defined mass transport properties make carbon the material of choice as the electrode in polymer electrolyte fuel cells to power next generation engines. Anticipated Developments in Carbon Fibers Much of the effort expended...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006070
EISBN: 978-1-62708-172-6
... extent by the type of interaction between the pigment or filler and the polymer matrix. The conclusion is that ion transport through protective polymeric coatings exposed to an aqueous electrolyte occurs largely by means of aqueous pathways. Additionally, Hare states, “Virtually all paint films...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.9781627081702
EISBN: 978-1-62708-170-2
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005585
EISBN: 978-1-62708-170-2
... the surface of a metal, when anodic, is converted to a coating having desirable protective, decorative, or functional properties. anolyte. The portion of electrolyte in the viciuity of t:Ite anode; in a divided cell, the portion of electrolyte on the anode side of the diagram. antioxidant. Any additive...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004186
EISBN: 978-1-62708-184-9
... of pharmaceuticals, flame retardants, electrolytic fuel cells, cement processing, tanning of leather, firebrick and silica brick, crucibles and molds, toilet preparations, varnish, and synthetic rubber. Corrosion of Metal Alloys in H<sub>3</sub>PO<sub>4</sub> A survey of metal groups reveals a range...