Skip Nav Destination
Close Modal
By
George E. Totten, Eva Troell, Lauralice C.F. Canale, Rosa L. Simencio Otero, Xinmin Luo
Search Results for
polymer degradation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 626 Search Results for
polymer degradation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006866
EISBN: 978-1-62708-395-9
.... It summarizes the main synthetic polymers that are released and available for bacterial and fungal decomposition. The article also presents a detailed discussion on the enzymes that are involved in plastic degradation, and the measurement of polymer degradation. bacterial decomposition biodegradation...
Abstract
Microbial degradation in the environment is initiated by abiotic (nonliving physical or chemical) processes. Mechanical weathering and other mechanical processes are the main drivers of the initial degradation. This article presents an overview of weathering and biodegradation. It summarizes the main synthetic polymers that are released and available for bacterial and fungal decomposition. The article also presents a detailed discussion on the enzymes that are involved in plastic degradation, and the measurement of polymer degradation.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002464
EISBN: 978-1-62708-194-8
... that must be considered when processing engineering thermoplastics are discussed. These include melt viscosity and melt strength; crystallization; orientation, die swell, shrinkage, and molded-in stress; polymer degradation; and polymer blends. chemical properties crystallization die swell...
Abstract
This article discusses the most fundamental building-block level, atomic level, molecular considerations, intermolecular structures, and supermolecular issues. It contains a table that shows the structures and lists the properties of selected commodity and engineering plastics. The article describes the effects of structure on thermal and mechanical properties. It reviews the chemical, optical, and electrical properties of engineering plastics and commodity plastics. An explanation of important physical properties, many of which are unique to polymers, is also included. The factors that must be considered when processing engineering thermoplastics are discussed. These include melt viscosity and melt strength; crystallization; orientation, die swell, shrinkage, and molded-in stress; polymer degradation; and polymer blends.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
..., and addresses related considerations such as melt viscosity and melt strength, crystallization, orientation, die swell, melt fracture, shrinkage, molded-in stress, and polymer degradation. composition elastic modulus engineering plastics polymer properties polymer structure shear rate...
Abstract
This article provides practical information and data on property development in engineering plastics. It discusses the effects of composition on submolecular and higher-order structure and the influence of plasticizers, additives, and blowing agents. It examines stress-strain curves corresponding to soft-and-weak, soft-and-tough, hard-and-brittle, and hard-and-tough plastics and temperature-modulus plots representative of polymers with different degrees of crystallinity, cross-linking, and polarity. It explains how viscosity varies with shear rate in polymer melts and how processes align with various regions of the viscosity curve. It discusses the concept of shear sensitivity, the nature of viscoelastic properties, and the electrical, chemical, and optical properties of different plastics. It also reviews plastic processing operations, including extrusion, injection molding, and thermoforming, and addresses related considerations such as melt viscosity and melt strength, crystallization, orientation, die swell, melt fracture, shrinkage, molded-in stress, and polymer degradation.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006920
EISBN: 978-1-62708-395-9
... of the polymeric material. The general photochemistry of basic polymers has been studied in detail and is mostly understood ( Ref 1 , 2 ). However, the degradation of technical materials and products in natural environments is a little more complicated. A technical polymer does not consist solely of its...
Abstract
This article describes the processes involved in photochemical aging and weathering of polymeric materials. It explains how solar radiation, especially in the UV range, combines with atmospheric oxygen, driving photooxidation and the development of unstable photoproducts that cause various types of damage when they decompose, including the scission of carbon bonds and polymer chains. The article illustrates some of the degradation reactions that occur in different polymers and presents an overview of the strategies used to prevent such reactions or otherwise mitigate their effects.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
... Abstract The article commences with an overview of short-term and long-term mechanical properties of polymeric materials. It discusses plasticization, solvation, and swelling in rubber products. The article further describes environmental stress cracking and degradation of polymers...
Abstract
The article commences with an overview of short-term and long-term mechanical properties of polymeric materials. It discusses plasticization, solvation, and swelling in rubber products. The article further describes environmental stress cracking and degradation of polymers. It illustrates how surface degradation of a plain strain tension specimen alters the ductile brittle transition in polyethylene creep rupture. The article concludes with information on the effects of temperature on polymer performance.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006867
EISBN: 978-1-62708-395-9
... embrittlement and temperature on polymer performance. brittle fracture degradation environmental stress cracking performance polymers surface embrittlement temperature POLYMERIC MATERIALS are often differentiated according to their short-term and long-term mechanical properties. The category...
Abstract
With any polymeric material, chemical exposure may have one or more different effects. Some chemicals act as plasticizers, changing the polymer from one that is hard, stiff, and brittle to one which is softer, more flexible, and sometimes tougher. Often these chemicals can dissolve the polymer if they are present in large enough quantity and if the polymer is not crosslinked. Other chemicals can induce environmental stress cracking (ESC), an effect in which brittle fracture of a polymer will occur at a level of stress well below that required to cause failure in the absence of the ESC reagent. Finally, there are some chemicals that cause actual degradation of the polymer, breaking the macromolecular chains, reducing molecular weight, and diminishing polymer properties as a result. This article examines each of these effects. The discussion also covers the effects of surface embrittlement and temperature on polymer performance.
Image
Published: 01 February 2024
Fig. 136 Cooling curve performance of a severely degraded aqueous polymer quenchant compared to water and a fresh solution at the same nominal concentration, bath temperature, and agitation. GPC, gel permeation chromatography
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009084
EISBN: 978-1-62708-177-1
... Abstract Polymer composite materials are subject to degradation if not appropriately protected from the environment. This article describes the effects of heat and atomic oxygen and ultraviolet-light on composite material surfaces, with illustrations. atomic oxygen composite material...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006871
EISBN: 978-1-62708-395-9
... factors. Outdoor degradation factors affect some materials more than others because of their chemical composition. Weather factors act synergistically on polymer degradation. They influence each other and can amplify their destructive effects. For example, elevated temperatures will increase the rate...
Abstract
This article presents a general overview of outdoor weather aging factors, their effects on the performance of polymeric materials, and the accelerated test methods that can be used to investigate those effects. These test methods are used to characterize material performance when subjected to specific, often controlled, and well-defined factors. The article also presents an overview of weathering instrument types that simulate outdoor stress factors.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005667
EISBN: 978-1-62708-198-6
.... If the polymerization reaction is conducted with varying quality of raw materials, or the reaction time, temperature, catalysts, or conditions do not sufficiently react for the correct duration, then the subsequent polymer may possess contaminants, degradation products, or unreacted and raw materials. These products...
Abstract
This article discusses several aspects of biocompatibility of polymers, including the selection of a suitable polymer, specific use of a material, contact of polymer on body site, and duration of the contact. It describes the factors influencing the biological response of the polymer from a biocompatibility perspective. These include raw materials, the manufacturing process, cleaning and sterilization processes, and biodegradation and biostability. The article reviews the general testing methods of polymers, such as chemical, mechanical and thermal. It concludes with a section on the guidance, provided by the regulatory authorities, on the biocompatibility testing of polymers and polymer-containing devices that can aid in selecting the right analysis.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
... absorbed. Absorbed water can adversely affect polymeric materials through dimensional changes (swelling of the material), surface degradation (color and gloss changes, crazing, blistering, etc.), and plasticization (softening) of the polymer, depressing T g and reducing mechanical and physical...
Abstract
Accelerated life testing and aging methodologies are increasingly being used to generate engineering data for determining material property degradation and service life (or fitness for purpose) of plastic materials for hostile service conditions. This article presents an overview of accelerated life testing and aging of unreinforced and fiber-reinforced plastic materials for assessing long-term material properties and life expectancy in hostile service environments. It considers various environmental factors, such as temperature, humidity, pressure, weathering, liquid chemicals (i.e., alkalis and acids), ionizing radiation, and biological degradation, along with the combined effects of mechanical stress, temperature, and moisture (including environmental stress corrosion). The article also includes information on the use of accelerated testing for predicting material property degradation and long-term performance.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003028
EISBN: 978-1-62708-200-6
... a number of facile radical reactions that lead to cross linking or chain degradation. Their replacement (fluoropolymers or aromatic polymers) results in substantially improved stability. The bond strength in polymers produced by step reactions, or condensation polymerization techniques, are usually...
Abstract
This article describes weathering and environmental factors that contribute to degradation in plastics, including temperature variations, moisture, sunlight, oxidation, microbiologic attack, and other environmental elements. It presents a general overview of aging factors, their effects on plastic materials, and the accelerated test methods that can be used to estimate the reaction of a plastic component during actual use. The article focuses on the determination of service temperature as it indicates the ability of a material to retain a certain property, when exposed to elevated temperatures for an extended period of time. It concludes by describing various degradation processes, namely, thermal degradation, thermal oxidative degradation, photooxidative degradation, environmental corrosion, and chemical corrosion and discussing the ways of detecting these degradation processes.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003381
EISBN: 978-1-62708-195-5
... information on the accelerated aging process for understanding the degradation mechanisms and failure modes in composites. It also describes the effect of moisture absorption on mechanical properties of polymer-matrix composites. composite material moisture absorption physical properties chemical...
Abstract
Hygrothermal behavior of cured composite materials relates to the combined and commonly synergistic effects of moisture absorption and temperature on various physical, chemical and mechanical properties. This article focuses on the influence of resins or matrices, reinforcements, processing, and diffusion on hygrothermal behavior of polymer-matrix composites and provides an outline on general considerations in assessing them. It discusses the hygrothermal testing and conditioning of polymer-matrix composites to assess fundamental hygrothermal behavior. The article provides information on the accelerated aging process for understanding the degradation mechanisms and failure modes in composites. It also describes the effect of moisture absorption on mechanical properties of polymer-matrix composites.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006672
EISBN: 978-1-62708-213-6
... requirements, data analysis, and provides examples of the applications and interpretation of DSC. differential scanning calorimetry polymers polymer degradation Overview Introduction Differential scanning calorimetry (DSC) is the most common thermal technique for polymer characterization...
Abstract
Differential scanning calorimetry (DSC) is the most common thermal technique for polymer characterization. This article provides a detailed account of the various factors and processes involved in DSC. The discussion covers the equipment used, specimen preparation process, calibration requirements, data analysis, and provides examples of the applications and interpretation of DSC.
Book Chapter
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007003
EISBN: 978-1-62708-450-5
... is designated in terms of molecular weight (MW) and degree of polymerization (DP). Molecular weight can be viewed as the total molecular weight of the simple monomer units in the polymer and can be calculated as: MW = Number of simple repeat units × Molecular weight of a repeat unit...
Abstract
This article presents the fundamentals and nomenclature of polymer quenchants and provides a detailed discussion on the polymers used for quenching formulation. The article describes the effect of polymer structure on the quenching mechanism. It also presents the factors affecting polymer quenchant performance. The article details the use of polymer quenchants for intensive quenching and then focuses on the wire patenting processes and polymer quenchant analysis. The article presents the application of polymer quenchants for induction hardening. Finally, it provides details on cooling curve analysis of polymer quenchants.
Image
Published: 01 February 2024
Fig. 54 The impact of degradation on solution viscosity (and quench severity) is greater for polymers of higher molecular weight. (a) Polymer chain scission for a low- (polymer 1) and a high- (polymer 2) molecular-weight polymer. (b) Relative effect on viscosity of polymer chain degradation
More
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
... of the random nature of most polymerization reactions. Thus, polymers are generally characterized by a molecular-weight distribution and the associated averages. This is discussed in more detail in the article “Characterization of Plastics in Failure Analysis” in this Volume. Deformation and Fracture...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals. It provides information on deformation, fracture, and crack propagation as well as the fractography involving the examination and interpretation of fracture surfaces, to determine the cause of failure. The fracture modes such as ductile fractures and brittle fractures are reviewed. The article also presents a detailed account of various fracture surface features. It concludes with several cases of field failure in various polymers that illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Image
Published: 01 February 2024
Fig. 57 The degradation rate of a polyalkylene glycol (PAG) quenchant depends on the molecular weight of the polymer used to formulate it. The repeat-quench test was used to develop these relative degradation curves for 20% aqueous polymer quenchants based on PAG polymers having relative
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004136
EISBN: 978-1-62708-184-9
.... The article reviews the development of chemically and structurally compatible component materials in PEMFCs, MCFCs, and SOFCs. corrosion long-term degradation fuel cells alkaline fuel cells phosphoric acid fuel cells molten carbonate fuel cells solid oxide fuel cells electrolytes polymer...
Abstract
This article describes the classification of fuel cells depending on the operating temperature and type of electrolytes used. This classification includes alkaline fuel cells, phosphoric acid fuel cells, polymer electrolyte membrane fuel cells (PEMFCs), molten carbonate fuel cells (MCFCs), and solid oxide fuel cells (SOFCs). The article explains the corrosion processes in fuel cells due to solid-gas interactions, solid-liquid interactions, and solid-solid interactions. It discusses the long-term performance stability and long-term degradation processes of PEMFCs, MCFCs, and SOFCs. The article reviews the development of chemically and structurally compatible component materials in PEMFCs, MCFCs, and SOFCs.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006865
EISBN: 978-1-62708-395-9
... from metals. One of the most important differences between polymers and other materials is the statistical nature of their molecular chains. A distribution of chain lengths is a consequence of the random nature of most polymerization reactions. Thus, polymers are generally characterized by a molecular...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals, including plastic deformation. It provides overviews of crack propagation and fractography. The article presents the distinction between ductile and brittle fracture modes. Several case studies of field failure in various polymers are also presented to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
1