Skip Nav Destination
Close Modal
Search Results for
polyglycols
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-11 of 11 Search Results for
polyglycols
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005687
EISBN: 978-1-62708-198-6
..., poly-p-dioxanone PDO Fixation devices Clips Poly(glycolic acid) ASTM F2313 Polyglycolic acid, polyglycolide, poly(glycolide) PGA Fixation devices Poly(lactic acid) ASTM F1925, ASTM WK9069 Polylactic acid, polylactide PLA, LPLA, PL, PLDL, PLDLA, DLPLA, PLLA, PDLLA Fixation devices...
Abstract
This article tabulates materials that are known to have been used in orthopaedic and/or cardiovascular medical devices. The materials are grouped as metals, ceramics and glasses, and synthetic polymers in order. These tables were compiled from the Medical Materials Database which is a product of ASM International and Granta Design available by license online and as an in-house version. The material usage was gleaned from over 24,000 U.S. Food and Drug Administration (USFDA), Center for Devices and Radiological Health, Premarket notifications (510k), and USFDA Premarket Approvals, and other device records that are a part of this database. The database includes other material categories as well. The usage of materials in predicate devices is an efficient tool in the material selection process aiming for regulatory approval.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004032
EISBN: 978-1-62708-185-6
... protecting the surface of the material against oxidation ( Ref 38 , Ref 39 , Ref 40 , Ref 41 ). Zinc phosphate coatings serve as carrier layers; the most important fluids are mineral oil-based oils with a high flash point, polyglycols, and polybutenes. They can be applied at temperatures up to about...
Abstract
This article lists functions of lubricants common to the majority of applications and processes. It discusses the lubricant candidates widely used in forging: conversion coatings with soaps (stearate compounds) and molybdenum disulfide for cold forging; oil-based thick, film oil or polymerbased lubricants and molybdenum disulfide for warm application; graphite suspensions in oil or water for hot forging steels; and glass films for titanium and superalloys hot forgings. The article describes the applications of lubricants in warm extrusion and forging, hot forging of steel, hot forging of aluminum, isothermal and hot die forging, and the extrusion of steel.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003012
EISBN: 978-1-62708-200-6
... abbreviations. Source: Ref 3 External antistatic agents are hygroscopic substances, such as glycerin, polyols, and polyglycols, that are applied directly to the surface of the finished part after molding is completed. Because they are applied externally, they are not classified as plastics additives...
Abstract
Additives for plastics and elastomers are used to increase the ease of processing and to improve the properties of the final product. Additives improve processing characteristics by increasing lubricity and by stabilizing the polymer. Additives that improve properties include those that decrease static charge development and microbial activity and those that improve flame retardation characteristics, color, light stability, impact resistance, density and mechanical properties. This article focuses on the additives for polymers and elastomers that are used for improving processing--blowing agents, mold-release agents, lubricants, plasticizers, and heat stabilizers--and for improving properties antimicrobials, antioxidants, antistatic agents, colorants, fillers and fiber reinforcements, flame retardants, impact modifiers, light stabilizers, plasticizers, and heat stabilizers. Furthermore, it discusses the method for addition of these additives and the problems faced during compounding.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003211
EISBN: 978-1-62708-199-3
..., such as one of the amines or amides (urea or thylene diamine). Typical vehicles include water, isopropyl alcohol, polyglycols, or petroleum jelly for pastes. The organic-acid fluxes are used in many electronic applications involving machine processes and hand assembly, as well as the hot tin or...
Abstract
Soldering involves heating a joint to a suitable temperature and using a filler metal (solder) that melts below 450 deg C (840 deg F). Beginning with an overview of the specification and standards and applications, this article discusses the principal levels and effects of the most common impurity elements in tin-lead solders. It describes the various processes involved in the successful soldering of joints, including shaping the parts to fit closely together; cleaning and preparing the surfaces to be joined; applying a flux; assembling the parts; and applying the heat and solder.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
Abstract
This article outlines some of the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of implants based on materials, such as metallic implants, ceramic implants, and polymeric implants. The article discusses the specific problems associated with implant manufacturing processes and the consequent compromises in properties of functionally graded implants. It describes the manufacturing of the functionally-graded hip implant by using the LENS process. It reviews the four different types of tissue responses to the biomaterial. The article discusses the testing of implant failure, such as in vitro and in vivo assessment of tissue compatibility.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003189
EISBN: 978-1-62708-199-3
Abstract
Cutting fluids play a major role in increasing productivity and reducing costs by making possible the use of higher cutting speeds, higher feed rates, and greater depths of cut. After listing the functions of cutting fluids, this article then covers the major types, characteristics, advantages and limitations of cutting and grinding fluids, such as cutting oils, water-miscible fluids, gaseous fluids, pastes, and solid lubricants along with their subtypes. It discusses the factors considered during the selection of cutting fluid, focusing on machinability (or grindability) of the material, compatibility (metallurgical, chemical, and human), and acceptability (fluid properties, reliability, and stability). The article also describes various application methods of cutting fluids and precautions that should be observed by the operator.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003008
EISBN: 978-1-62708-200-6
Abstract
This article discusses the family characteristics, commercial forms, applications, resin grades, and mechanical and physical properties of traditional engineering thermoplastics in their neat (unmodified) form and as compounds and composites, namely, acrylonitrile-butadiene-styrenes, acrylics, high-density polyethylenes, reinforced polypropylenes, high-impact polystyrenes, polyvinyl chloride, styrene-acrylonitriles, and styrene-maleic anhydrides.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... Ultrahigh-molecular-weight polyethylene Finger joints Silicone Sutures Polylactic and polyglycolic acid Tracheal tubes Silicone, acrylic, nylon Catheters Polyurethane, silicone rubber, Teflon (E.I. du Pont de Nemours and Company) Heart pacemaker Acetal, polyethylene, polyurethane...
Abstract
The biocompatibility of a material relates to its immunological response, toxicity profile, and ability to integrate with surrounding tissue without undesirable local or systemic effects on a patient. This article underscores the transformation of the medical device design ecosystem engaged as an integral part of the device ecosystem. It discusses the various applications of biomaterials, including orthopedic, cardiovascular, ophthalmic, and dental applications. The article describes the four major categories of biomaterials, such as metals, polymers, glass and ceramics, and composites. A discussion on natural materials, nanomaterials, and stem cells is also provided. The article concludes with information on examples of biomaterials applications, including endovascular devices, knee implants, and neurostimulation.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003047
EISBN: 978-1-62708-200-6
Abstract
This article begins with an overview of the fundamentals of adhesive technology, including functions, limitations, adhesive joint types, and the key factors in the selection of adhesives, including application, type of joint, process limitation, mechanical requirement, and service conditions. It then focuses on the characteristics, types, and properties of the five groups of adhesives, such as structural, hot melt, pressure sensitive, water based, ultraviolet, and electron beam cured adhesives. The article also discusses the functions and applications of adhesive modifiers, including fillers, adhesion promoters, tackifiers, and tougheners. It gives a short note on functions of primers and primerless bonding. Applications of adhesives in automotive, aerospace, electronics, electrical, medical, sports, and construction sectors are also described. Finally, the article describes the steps in adhesive bonding, including storage and handling of adhesives, bonding preparation, adhesive application, tooling, and curing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003053
EISBN: 978-1-62708-200-6
Abstract
Ceramic-forming processes usually start with a powder which is then compacted into a porous shape, achieving maximum particle packing density with a high degree of uniformity. This article compares and contrasts several forming processes, including mechanical consolidation, dry pressing, cold isostatic pressing, slip casting, tape casting, roll compaction, extrusion, and injection molding. It describes the advantages, equipment and tooling, and material requirements of green machining, the machining of ceramics in an unfired state with the intent of producing parts as close to as possible to their final shape. The article also provides useful information on drying methods, shrinkage, and defects as well as the removal of organic processing aids such as dispersants, binders, plasticizers, and lubricants.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003052
EISBN: 978-1-62708-200-6
Abstract
This article explains how ceramic powders are made. It begins by briefly describing the raw materials used in structural clay products, whitewares, refractories, and advanced ceramics. It then examines various additives that promote uniformity at different stages of the process. After a description of the comminution process (wet and dry milling methods), it discusses batching and mixing operations and granulation methods. The article also deals with the effect of process variables and the steps involved in chemical synthesis, including preparation from solution and gas-phase reactions, filtration and washing, and powder recovery techniques. It concludes with a discussion on characterization, centering on size distribution analysis, specific surface area, density, porosity chemical composition, phase, and surface composition.