1-20 of 446 Search Results for

polycrystalline metals

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003784
EISBN: 978-1-62708-177-1
... Abstract Pure metals normally solidify into polycrystalline masses, but it is relatively easy to produce single crystals by directional solidification from the melt. This article illustrates the dislocations present in a metal crystal, which is often polygonized into sub-boundaries during grain...
Image
Published: 01 December 2009
Fig. 1 Schematic representations of (a) the fully annealed state of a polycrystalline metal, (b) the former interpretation of a cold-worked specimen (amorphous state), (c) the modern interpretation of the latter, (d) a hot-worked dynamically recrystallized microstructure, and (e More
Image
Published: 01 January 1987
fracture in polycrystalline metals. TEM replica, 4000× (I. Le May, Metallurgical Consulting Services Ltd.) More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001756
EISBN: 978-1-62708-178-8
... Abstract X-ray diffraction techniques are useful for characterizing crystalline materials, such as metals, intermetallics, ceramics, minerals, polymers, plastics, and other inorganic or organic compounds. This article discusses the theory of x-rays and how they are generated and detected...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003426
EISBN: 978-1-62708-195-5
... Abstract Good hole-drilling processes are key to joining composite parts with other composite parts or with metal parts. This article discusses the considerations for drilling polymer-matrix composites. It describes the use of power-feed drill motors and automated drilling/fastener installation...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003721
EISBN: 978-1-62708-177-1
... ) Frequently, several structural features on different levels in a given metallic system are of interest. For example, a polycrystalline single-phase metal has a grain structure, and within each grain a substructure may be present, or, in a polycrystalline long-range ordered binary alloy, a substructure...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003730
EISBN: 978-1-62708-177-1
...” in this Volume. Substructures In the broadest sense, substructures comprise all imperfections within the grains of polycrystalline metals or even single-phase alloys. Conventionally, substructure refers to subboundaries (low-angle boundaries), crystal imperfections (dislocations and stacking faults...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001106
EISBN: 978-1-62708-162-7
... on the tools, can include laser cutting, electrodischarge machine cutting, grinding, lapping, and polishing steps. Polycrystalline Diamond With a Metallic Second Phase Polycrystalline diamond with a metallic second phase has a microstructure of diamond grains with the metallic phase mostly at the grain...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001285
EISBN: 978-1-62708-170-2
... that are commonly deposited using the PECVD process are noncrystalline materials such as oxides, nitrides, and oxynitrides of silicon ( Ref 1 ), and crystalline materials such as polycrystalline silicon ( Ref 2 , 3 , 4 ), epitaxial silicon ( Ref 5 , 6 , 7 ), and refractory metals and their silicides. All...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003744
EISBN: 978-1-62708-177-1
... and rotated slip planes. After Hertzberg ( Ref 15 ) Deformation of polycrystalline metals is more complicated than this simple example in that it occurs by simultaneous slip on several slip systems in each crystallite. In a similar manner, however, the lattice in each grain will rotate according...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006843
EISBN: 978-1-62708-387-4
... (and appropriately aligned) crystallographic plane or cleaved through the crystal. Classic studies demonstrated that in uniaxial tension, deformation occurred discretely along crystallographic planes. However, most engineering metals and alloys are polycrystalline in nature. Fracture in wrought polycrystalline...
Image
Published: 30 November 2018
Fig. 19 Cutting tool wear of polycrystalline diamond (PCD) cutting tools when turning aluminum metal-matrix composites at a cutting speed of 500 m/min (1640 ft/min). Nose radius: 0.8 mm (0.03 in.) More
Image
Published: 31 August 2017
Fig. 24 Machining grade 2 austempered ductile iron. (a) Tool life versus cutting speed for different cutting tool materials. Source: Ref 27 . (b) Flank wear and the ratio of volume metal removed per units of flank wear with polycrystalline cubic boron nitride (PCBN) cutting tool. Source: Ref More
Image
Published: 31 December 2017
Fig. 34 TEM images of (a) Al 2 O 3 -Fe thin films and (b) Al 2 O 3 -Ni multilayer nanocomposite thin films (8% metal volume fraction) deposited at 500 °C (930 °F) using pulsed laser deposition. Al 2 O 3 layers deposited on Fe nanoparticles are polycrystalline compared with the amorphous layer More
Image
Published: 01 January 1986
Fig. 23 Bright-field image of polycrystalline aluminum showing dislocations as they often appear in metallic crystals. The dislocations appear as dark curved lines and exhibit dark contrast relative to the matrix due to the distortion of the atomic planes near the dislocations More
Image
Published: 31 October 2011
Fig. 26 Schematic showing the effect of alloy composition, Δ t 8-5 , oxygen content, and γ grain size on the development of microstructure in ferritic steel weld metals. The hexagons represent cross sections of columnar γ grains. (a) The γ grain boundaries become decorated first More
Image
Published: 01 January 1993
Fig. 21 Schematic showing the effect of alloy composition, Δ t 8−5 , oxygen content, and γ grain size on the development of microstructure in ferritic steel weld metals. The hexagons represent cross sections of columnar γ grains. (a) The γ grain boundaries become decorated first More
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003188
EISBN: 978-1-62708-199-3
..., cermets, ceramics, cubic boron nitride, and polycrystalline diamond. It compares the toughness, and wear resistance for these cutting tool materials. Finally, the article explains the steps for selecting tool material grades for specific application. cemented carbides ceramics cermets cobalt-base...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003424
EISBN: 978-1-62708-195-5
... plated, brazed diamond, diamond coated carbide, and polycrystalline cutting tools. The article also describes cutting tool materials that are used for peripheral milling, face milling, and the trimming of polymer-matrix composites. machining carbon fiber-reinforced epoxy epoxy thermoset composite...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006306
EISBN: 978-1-62708-179-5
... depends on the type of metal matrix. The effect of graphite shape on cutting tool life is more prominent in most pearlitic cast irons ( Fig. 12 ). Fig. 12 Influence of graphite shape on tool life for polycrystalline cubic boron nitride turning at 800 m/min (2600 ft/min) (mostly pearlitic matrix...