1-20 of 190 Search Results for

polycrystalline diamond

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 1989
Fig. 8 Formats for polycrystalline diamond and polycrystalline CBN tools More
Image
Published: 01 January 1990
Fig. 7 Microstructure of sintered polycrystalline diamond. (a) Diamond with second phase at the grain boundaries. 225×. (b) Detailed structure of diamond-to-diamond bonding at grain boundary More
Image
Published: 01 January 1990
Fig. 11 Polycrystalline diamond with substrates. (a) Typical fully round PCD tool blank. This type of blank is brazed or mechanically clamped to extend the usable cutting edge. (b) Typical square PCD tool blank with a long straight cutting edge that is ideal for many applications. (c) Typical More
Image
Published: 30 November 2018
Fig. 19 Cutting tool wear of polycrystalline diamond (PCD) cutting tools when turning aluminum metal-matrix composites at a cutting speed of 500 m/min (1640 ft/min). Nose radius: 0.8 mm (0.03 in.) More
Image
Published: 31 August 2017
Fig. 27 Hot hardness of tool materials. PCD, polycrystalline diamond; HSS, high-speed steel. Source: Ref 29 More
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001320
EISBN: 978-1-62708-170-2
... Abstract The classes of tool materials for machining operations are high-speed tool steels, carbides, cermets, ceramics, polycrystalline cubic boron nitrides, and polycrystalline diamonds. This article discusses the expanding role of surface engineering in increasing the manufacturing...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006360
EISBN: 978-1-62708-192-4
... Abstract This article describes two variations of carbon-base coatings: diamondlike carbon (DLC) coatings and polycrystalline diamond (PCD) coatings. It discusses the basics of a few deposition methods as they apply to industrially relevant coatings. The methods include deposition of tungsten...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001231
EISBN: 978-1-62708-170-2
... Abstract This article focuses on precision and ultraprecision finish machining techniques that make use of defined cutting edges, such as polycrystalline diamond and cubic boron nitride compacts. The techniques are finish turning, finish broaching, finish milling, and finish drilling...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003426
EISBN: 978-1-62708-195-5
... equipment. The article provides a discussion on reaming, countersinking, and three recommended choices of cutting tools for producing a countersink in carbon/epoxy structure. The cutting tools include: standard carbide insert cutters, solid carbide cutters, or polycrystalline diamond (PCD) insert cutters...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003188
EISBN: 978-1-62708-199-3
..., cermets, ceramics, cubic boron nitride, and polycrystalline diamond. It compares the toughness, and wear resistance for these cutting tool materials. Finally, the article explains the steps for selecting tool material grades for specific application. cemented carbides ceramics cermets cobalt-base...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002177
EISBN: 978-1-62708-188-7
... carbides, cermets, ceramics, cubic boron nitride, and polycrystalline diamond. The article considers the matrices that represent the range of tests performed on candidate cutting tool materials: the workpiece matrix, the property matrix, and the operation matrix. Various machine tests used to evaluate...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001106
EISBN: 978-1-62708-162-7
... boron nitride compounds are available in the form of grit and sintered polycrystalline blanks of various size, shape, and composition. The article explains how superabrasive grains made from these materials can be used in lapping, polishing, and grinding applications, and how diamond and boron nitride...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003424
EISBN: 978-1-62708-195-5
... plated, brazed diamond, diamond coated carbide, and polycrystalline cutting tools. The article also describes cutting tool materials that are used for peripheral milling, face milling, and the trimming of polymer-matrix composites. machining carbon fiber-reinforced epoxy epoxy thermoset composite...
Image
Published: 31 August 2017
Fig. 28 Hardness and toughness of cutting tool materials. PCD, polycrystalline diamond; DLC, diamond-like carbon; PCBN, polycrystalline cubic boron nitride; PM HSS, powder metallurgy high-speed steel. Source: Ref 29 More
Image
Published: 31 August 2017
Fig. 32 Pearlitic compacted graphite iron tool life in number of bores for different cutting tool materials. PCD, polycrystalline diamond; PCBN, polycrystalline cubic boron nitride. Source: Ref 34 More
Image
Published: 31 December 2017
Fig. 6 As-deposited scanning electron microscope (SEM) images of (a) polycrystalline diamond (PCD) film surface morphology and (b) nanocrystalline diamond (NCD) surface morphology. Source: Ref 30 More
Image
Published: 31 August 2017
Fig. 33 Approximate speed ranges and applications of various cutting tool materials. PCD, polycrystalline diamond; CBN, cubic boron nitride; HSS, high-speed steel More
Image
Published: 30 September 2015
Fig. 4 The unique properties of each tool material determine the appropriate feed rate and speed. PCD/CBN, polycrystalline diamond/cubic boron nitride; HSCo, high-speed cobalt; HSS, high-speed steel. Courtesy of Kennametal More
Image
Published: 01 December 2004
Fig. 33 Variation in polishing rate in a semiautomatic machine with type of polishing cloth and particle diameter of polycrystalline diamond abrasives. The specimen polished was a ferritic steel (hardness, 700 HV), and the specimen pressure was 43 kPa. Courtesy of K. Geels, Struers A/S. Source More
Image
Published: 01 December 2004
Fig. 55 Examples of artifact-free or nearly artifact-free surfaces produced by different manual final polishing methods on 30% Zn annealed brass (similar to C26000). (a) Polished manually using 0.1 μm grade polycrystalline diamond abrasive. Etched in a ferric chloride reagent. (b) Polished More