Skip Nav Destination
Close Modal
Search Results for
polycarbonate resins
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 135 Search Results for
polycarbonate resins
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003013
EISBN: 978-1-62708-200-6
... (PET), which accounts for the largest percentage of plastic recycling, high-density polyethylene (HDPE) plastics, the other large-volume plastic recyclate, as well as vinyl resins and polycarbonate resins are described. The life cycle of plastics has four phases: poly formation, part fabrication...
Abstract
This article discusses postconsumer plastics recyclate quantities, the classification of plastics recycling into primary, secondary, tertiary, and quaternary categories, and how the life cycle of plastics is affected by recycling. The recycling processes of polyethylene terephthalate (PET), which accounts for the largest percentage of plastic recycling, high-density polyethylene (HDPE) plastics, the other large-volume plastic recyclate, as well as vinyl resins and polycarbonate resins are described. The life cycle of plastics has four phases: poly formation, part fabrication, product service, and disposal. Landfilling is still the primary method of final disposal, and incineration is another option, but recycling has become a viable alternative. The article presents a comparison between secondary and tertiary recycling.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... viscosity—more difficult to fill out the mold The functional group that is part of the repeating monomer influences the characteristics of the amorphous plastic. For example, polycarbonate and polystyrene both have excellent transparency, but this is where the similarities stop. Polycarbonate is tough...
Abstract
There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product. This article reviews the numerous considerations that are equally important to help ensure that part failure does not occur. It provides a quick review of thermoplastic and thermoset plastics. The article focuses primarily on thermoset materials that at room temperature are below their glass transition temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
.... The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aid in the characterization of the failures. The article describes the methods used for determining the molecular weight of a plastic resin...
Abstract
This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aid in the characterization of the failures. The article describes the methods used for determining the molecular weight of a plastic resin. It explains the use of mechanical testing in failure analysis and also describes the considerations in the selection and use of test methods.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003002
EISBN: 978-1-62708-200-6
... 0.38 >21 NB 125 255 30% glass fiber 148 21.5 7.9 1.15 0.64 3.7 140 285 30% carbon fiber 207 30 15.2 2.2 0.64 4.3 145 290 Polycarbonate (PC) Base resin 62 9 2.3 0.33 1.4 >21 130 265 30% glass fiber 128 18.5 8.3 1.2 2.0 9.34 150 300...
Abstract
This article is a comprehensive collection of engineering tables providing information on the mechanical properties of and the techniques for processing and characterizing polymeric materials, such as thermosets, thermoset-matrix unidirectional advanced composites, and unreinforced and carbon-and glass-reinforced engineering thermoplastics. Values are also provided for chemical resistance ratings for selected plastics and metals, and hardness of selected elastomers.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... distribution, crystallinity, tacticity, molecular orientation, and fusion. These characteristics have a significant impact on the properties of the molded article. Additionally, plastic resins are formulated with additives such as reinforcing fillers, plasticizers, colorants, antidegradants, and process aids...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002477
EISBN: 978-1-62708-194-8
... behavior. A ductility ratio of 1.0 corresponds to a ductile failure, while ductility numbers less than 1.0 correspond to varying levels of brittle behavior. Ductility ratios can be plotted as a function of strain rate at different temperatures to create fracture maps such as the one shown for polycarbonate...
Abstract
The key to any successful part development is the proper choice of material, process, and design matched to the part performance requirements. Understanding the true effects of time, temperature, and rate of loading on material performance can make the difference between a successful application and catastrophic failure. This article provides examples of reliable material performance indicators and common practices to avoid failure. Simple tools and techniques for predicting part mechanical performance integrated with manufacturing concerns, such as flow length and cycle time, are demonstrated. The article describes the prediction of mechanical part performance for stiffness, strength/impact, creep/stress relaxation, and fatigue.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003331
EISBN: 978-1-62708-176-4
... ABS 2.9 0.42 2.0 0.29 Acetal, copolymer; unreinforced 2.8 0.41 … … Phenylene oxide based resins; unreinforced 2.6 0.38 2.5 0.36 ABS/polycarbonate 2.6 0.37 … … Acrylic/PVC 2.6 0.37 2.3 0.34 Polyaryl sulfone 2.6 0.37 … … Polysulfone; unreinforced 2.5 0.36...
Abstract
This article is a comprehensive collection of tables that list the values for hardness of plastics, rubber, elastomers, and metals. The tables also list the tensile yield strength and tensile modulus of metals and plastics at room temperature. A comparison of various engineering materials, on the basis of tensile strength, is also provided.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
.... Engineering plastics all have, as their principal constituent, one or more synthetic polymer resins and almost universally contain additives. Additives, which have much smaller molecules than polymers, provide color, flexibility, rigidity, flame resistance, weathering resistance, and/or processibility...
Abstract
This introductory article describes the various aspects of chemical structure that are important to an understanding of polymer properties and thus their eventual effect on the end-use performance of engineering plastics. The polymers covered include hydrocarbon polymers, carbon-chain polymers, heterochain polymers, and polymers containing aromatic rings. The article also includes some general information on the classification and naming of polymers and plastics. The most important properties of polymers, namely, thermal, mechanical, chemical, electrical, and optical properties, and the most significant influences of structure on those properties are then discussed. A variety of engineering thermoplastics, including some that are regarded as high-performance thermoplastics, are covered in this article. In addition, a few examples of commodity thermoplastics and biodegradable thermoplastics are presented for comparison. Finally, the properties and applications of six common thermosets are briefly considered.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003007
EISBN: 978-1-62708-200-6
... a material that has as its principal constituent one or more polymer resins, and that is capable of being formed or molded into an end-use shape. Use of the word “polymer” for such a material is avoided here, for two major reasons: (1) Polymer resins are only infrequently used in their “neat” form (i.e...
Abstract
Engineering plastics offer unique product benefits based on physical properties, or combinations of physical properties, that allow vastly improved product performance. Providing an overview of the general characteristics and the mechanical and environmental stress response of engineering plastics, this article discusses various factors, including thermal, mechanical and electrical properties, environmental factors, and material cost that are important in the selection of engineering plastics for specific applications.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006929
EISBN: 978-1-62708-395-9
... material. The constituents of the composite are an aromatic-amine-cured epoxy resin and uniaxial 67 wt% glass roving reinforcement. In the creep tests, the reinforcement runs parallel to the long axis of the specimens. Fig. 13 Polycarbonate (PC) creep compliance at 23 °C (73.4 °F) and 60 °C (140 °F...
Abstract
This article provides an overview of the physics and math associated with moisture-related failures in plastic components. It develops key equations, showing how they are used to analyze the causes and effects of water uptake, diffusion, and moisture concentration in polymeric materials and resins. It explains how absorbed moisture affects a wide range of properties, including glass transition temperature, flexural and shear modulus,creep, stress relaxation, swelling, tensile and yield strength, and fatigue cracking. It provides relevant data on common polymers, resins, and fiber-resin composites.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
...) Table 3 Water losses during temperature scans (thermogravimetric tests) Resin curing agent or plastic Beginning water content, wt% Water loss, wt% Epon resin 826/diamino-diphenyl sulfone 2.28 −0.91 at 40 °C/min (70 °F/min) −2.02 at 10 °C/min (18 °F/min) Polycarbonate 0.32 −0.2 at 40...
Abstract
This article discusses the thermal properties of engineering plastics and elastomers with respect to chemical composition, chain configuration, and base polymer conformation as determined by thermal analysis. It describes the processing of base polymers with or without additives and their response to chemical, physical, and mechanical stresses whether as an unfilled, shaped article or as a component of a composite structure. It summarizes the basic thermal properties of thermoplastics and thermosets, including thermal conductivity, temperature resistance, thermal expansion, specific heat, and glass transition temperature. It also provides information on polyimide and bismaleimide resin systems. Representative examples of different types of engineering thermoplastics are discussed primarily in terms of structure and thermal properties.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002491
EISBN: 978-1-62708-194-8
... as a viable process for both prototyping and low-volume production. Typical casting resins include casting acrylic, casting polycarbonate, epoxy, polyurethane, and polyester. The casting process produces plastic parts with the lowest level of internal stress and a high degree of dimensional stability...
Abstract
This article describes key processing methods and related design, manufacturing, and application considerations for plastic parts. The methods include injection molding, extrusion, thermoforming, blow molding, rotational molding, compression molding/transfer molding, composites processing, and casting. The article describes principal features incorporated into the design of plastic parts. It concludes with a discussion on the materials selection methodology for plastics.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006916
EISBN: 978-1-62708-395-9
... failures can be traced back to the processor simply using the wrong material. If mixing of color, additives, or regrind is required, the processor must make sure that the proper mixing ratio is maintained and that the additives are thoroughly mixed into the virgin resin. Appropriate use of automated...
Abstract
This article focuses on manufacturing-related failures of injection-molded plastic parts, although the concepts apply to all plastic manufacturing processes It provides detailed examples of failures due to improper material handling, drying, mixing of additives, and molecular packing and orientation. It also presents examples of failures stemming from material degradation improper use of metal inserts, weak weld lines, insufficient curing of thermosets, and inadequate mixing and impregnation in the case of thermoset composites.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005687
EISBN: 978-1-62708-198-6
... Cardiovascular Acrylics Poly(methyl methacrylate) ASTM F451, FDA class II special controls Poly (methyl 2-methylpropanoate), polymethylmethacrylate, methyl methacrylate resin PMMA, (C 5 O 2 H 8 )n Elbow; hips; shoulders; fixation devices; cranioplasty ABS Acrylonitrile butadiene styrene...
Abstract
This article tabulates materials that are known to have been used in orthopaedic and/or cardiovascular medical devices. The materials are grouped as metals, ceramics and glasses, and synthetic polymers in order. These tables were compiled from the Medical Materials Database which is a product of ASM International and Granta Design available by license online and as an in-house version. The material usage was gleaned from over 24,000 U.S. Food and Drug Administration (USFDA), Center for Devices and Radiological Health, Premarket notifications (510k), and USFDA Premarket Approvals, and other device records that are a part of this database. The database includes other material categories as well. The usage of materials in predicate devices is an efficient tool in the material selection process aiming for regulatory approval.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003023
EISBN: 978-1-62708-200-6
... expansion, specific heat, and the determination of glass transition temperatures. It concludes with a discussion of the thermal and related properties of nine thermostat resin systems divided into three groups by low, medium, and high service temperature capabilities. differential scanning calorimetry...
Abstract
Thermal analysis provides a powerful tool for researchers and engineers in determining both unknown and reproducible behavioral properties of polymer molecules. This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, conformation of the base polymers, processing of the base polymers with or without additives; and the response to chemical, physical, and mechanical stresses of base polymers as unfilled, shaped articles or as components of composite structures. It also describes thermal analysis techniques, including differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and rheological analysis. This article also summarizes the basic thermal properties used in the application of engineering plastics, such as thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass transition temperatures. It concludes with a discussion of the thermal and related properties of nine thermostat resin systems divided into three groups by low, medium, and high service temperature capabilities.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006917
EISBN: 978-1-62708-395-9
.... The assembly stress was sufficient to cause cracking in conjunction with the relatively aggressive ESC agent. A medical handle produced from a polycarbonate/polybutylene terephthalate resin cracked shortly after assembly. The UV-curable adhesive used to bond individual sections was not properly cured...
Abstract
While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer with a better understanding of how to evaluate and prevent it. It then presents factors that affect and contribute to the susceptibility of plastic to ESC: material factors, chemical factors, stress, and environmental factors. The article includes the collection of background information to understand the circumstances surrounding the failure, a fractographic evaluation to assess the cracking, and analytical testing to evaluate the material, design, manufacturing, and environmental factors.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003021
EISBN: 978-1-62708-200-6
..., 22, 23, 25, 26 5, 23, 36 5, 23, 25, 36 5, 23, 36 5, 23, 36 Phenylene-oxide-based resin 23, 31, 36 4, 5, 25, 36 5, 25, 31, 36 23, 25, 26 23, 31, 36 23, 25, 31, 36 4, 23, 36 4, 25, 36 Polycarbonate 15, 16 4, 25, 26 25, 26 4, 15, 16, 25 15, 16 16, 25, 26 4, 25 4, 26...
Abstract
This article discusses the classification of the attachment and joining methods in plastics, including mechanical fastening, adhesive bonding, solvent bonding, and welding. It describes the mechanical fastening techniques used to join both similar and dissimilar materials with machine screws or bolts, nuts and washers, molded-in threads, self-threading screws, rivets, spring-steel fasteners, press fits, and snap fits. The article explains solvent bonding used for thermoplastic parts, and tabulates the solvent types used with various plastics. It also describes the surface preparation of plastics, chemical treatment for adhesion, and tabulates the adhesive types for bonding plastics to plastics and plastics to nonplastics. The article briefly describes the welding processes of thermoplastics, including fusion welding (hot-tool, hot gas, extrusion, and focused infrared), friction welding (vibration, spin, and ultrasonic), and electromagnetic welding (resistance, induction, dielectric, and microwave). It concludes with the evaluation of welds using destructive and nondestructive testing.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006912
EISBN: 978-1-62708-395-9
... apparent that most were manufactured out of metal, wood, or glass ( Fig. 1 ). In the short span of 70 years, the application of plastics has grown exponentially (from 1.5 million tons to 350 million tons of plastic resin sold), affecting every industry worldwide. Fig. 1 Vintage 1950s television...
Abstract
Plastic product failures are directly attributed to one of the following four reasons: omission of a critical performance requirement, improper materials specification, design error, and processing/manufacturing error. Therefore, product failures can be minimized or eliminated if all of these parameters are comprehensively examined during the design process. This article focuses on all of these factors, except processing-related failures, which are outside the design and engineering domain. It is dedicated to the identification and avoidance of common problems associated with the selection and designing of plastic parts. The article provides information on the material-related design criteria that depend on the applications, environmental conditions of use, and performance requirements. It discusses physical properties of plastics based on their relevance to real-world environmental conditions. The most-common design problems related to design considerations are also covered.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003370
EISBN: 978-1-62708-195-5
... Abstract Molding compounds are plastic materials in varying stages of pellets or granulation that consist of resin, filler, pigments, reinforcement, plasticizers, and other ingredients ready for use in a molding operation. This article describes the material components and physical properties...
Abstract
Molding compounds are plastic materials in varying stages of pellets or granulation that consist of resin, filler, pigments, reinforcement, plasticizers, and other ingredients ready for use in a molding operation. This article describes the material components and physical properties of sheet molding compounds (SMC). The three types of resin paste mixing techniques, such as batch, batch/continuous, and continuous, for an SMC operation are reviewed. The article discusses the design features and functional operations of the two types of SMC machines, namely, continuous-belt and beltless machines. It explains the formulation and processing of bulk molding compounds and reviews molding methods for bulk molding compounds, including compression, transfer, and injection molding. The effects of the fiber type and length and the matrix type on thermoset bulk molding compounds are discussed. It describes the four injection molding processes of injection molding compounds such as feeding, transporting, injecting, and flowing.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006029
EISBN: 978-1-62708-172-6
... in protective coatings (84 citations to date) documents the benefits of silicone-organic copolymers in a wide array of systems including: epoxies, urethanes, amide-imides, sulfones, polyesters, polyphenylene sulfide, and polycarbonates ( Ref 8 ). Demand for polysiloxane resin systems has dramatically...
Abstract
This article focuses on technologies in the protective coatings field, namely, polysiloxane hybrids and related materials. Industrial maintenance topcoats, including silicone alkyds, silicone epoxies, and polysiloxanes are reviewed. The article discusses two major application areas of protective coatings, namely, architectural coatings and automotive clear coats.
1