Skip Nav Destination
Close Modal
Search Results for
polyaspartic coatings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-13 of 13 Search Results for
polyaspartic coatings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006036
EISBN: 978-1-62708-172-6
... Abstract Polyaspartic coating technology has found utility in a variety of coating applications, including corrosion protection and flooring topcoats, as these coatings are based on aliphatic polyisocyanates and aliphatic diamines. This article describes the chemistry of polyaspartic esters...
Abstract
Polyaspartic coating technology has found utility in a variety of coating applications, including corrosion protection and flooring topcoats, as these coatings are based on aliphatic polyisocyanates and aliphatic diamines. This article describes the chemistry of polyaspartic esters and curing characteristics and performance properties of polyaspartic coatings. It also provides information on curing corrosion protection coating systems, polyaspartic floor coatings, and safe-use recommendations for handling isocyanates.
Image
Published: 30 September 2015
Fig. 5 Effect of humidity on hard dry of next-generation polyaspartic coatings. RH, relative humidity
More
Image
Published: 01 January 2003
Fig. 27 Structure of aliphatic polyurea coatings. X is one of the polyaspartic esters shown as (a), (b), (c), and (d). The speed of reaction and therefore the pot life and cure time increase from (a) (the slowest) to (d) (the fastest). (d) is the most flexible and has the greatest elongation.
More
Image
Published: 30 September 2015
Fig. 9 Viscosity profiles of polyaspartic clear coats with different ratios of polyaspartic ester resins
More
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006047
EISBN: 978-1-62708-172-6
... Abstract Two-component polyurea elastomeric coating/lining systems are the newest technology in the protective coating/lining industry and a wide variety of applications have been developed. These include coating/lining applications over concrete, geotextile membranes, various metals...
Abstract
Two-component polyurea elastomeric coating/lining systems are the newest technology in the protective coating/lining industry and a wide variety of applications have been developed. These include coating/lining applications over concrete, geotextile membranes, various metals for corrosion and decorative areas, and some plastics. This article discusses the formulation basics of polyurea technology and compares the technology to that of polyurethane and polyurethane/polyurea systems. It addresses performance issues and describes application processing considerations and safety practices of polyurea coating/lining systems.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006011
EISBN: 978-1-62708-172-6
... a polyurea coating. Water reacts with isocyanates, yielding carbon dioxide and producing an amine that further reacts with isocyanates. Primary and secondary amine reactions with isocyanates typically are very fast, often making them unusable with traditional coatings application equipment. Polyaspartic...
Abstract
Polyurethane is any polymer consisting of a chain of repeating organic units joined by urethane linkages. Polyurethane polymers are formed through step-growth polymerization by making a monomer containing at least two isocyanate functional groups to react with another monomer containing at least two hydroxyl (alcohol) groups. This article provides a detailed account of the protective coatings used in the building, infrastructure, and architectural markets. It focuses on the various types of polyurethane coatings used in these applications: moisture-cure and two-pack aromatic coatings as primers and topcoats, moisture-cure aromatic elastomeric high-build coatings, moisture-cure aliphatic topcoats, two-pack aliphatic polyurethane coatings as topcoats, and one- and two-pack polyurethane dispersion coatings as sealers and topcoats. It also includes a section on the health effects of isocyanates.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006050
EISBN: 978-1-62708-172-6
.... Given the right pH (which is typically not an issue in most commercial buildings), galvanizing does not need to be painted. However, if aesthetics are of concern, galvanizing can be coated with epoxy and any number of finish coats (e.g., polyurethane, polyaspartic, polysiloxane, acrylic...
Abstract
This article identifies the coatings applied to many substrates for both beautification and protection, and the inherent conflicts that exist between the coatings and the buildings they are designed to protect; emphasis is placed on masonry walls. It provides information on the purposes of the coatings in the commercial buildings. The article briefly describes some of the most common types of substrates found in buildings and the coatings commonly associated with each substrate. The selection of the coating system depends on the substrate and service expectations. The article addresses the primary causes of masonry coating problems and also provides a detailed discussion on the wall design considerations, moisture considerations, and coating system challenges in the masonry buildings.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006072
EISBN: 978-1-62708-172-6
... and maintenance) Table 1 Coating systems for highway bridges (new construction and maintenance) Coating system Highway bridges, new Highway bridges, maintenance 1 (a) Highway bridges, maintenance 2 (b) Inorganic zinc-rich primer/polyamide epoxy/acrylic polyurethane or polyaspartic...
Abstract
This article provides a basic overview of bridge corrosion, where it occurs on steel and concrete bridge structures, and how to prevent corrosion by using coatings. It describes types of bridge designs, with illustrations, and presents information on how corrosion occurs in different bridge zones and areas, with illustrations. The article concludes with a discussion on the common methods of coating systems applications on bridge structures and key elements in coating condition assessment.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006335
EISBN: 978-1-62708-179-5
..., and polyurethanes. Some other high-performance coatings are polyaspartics, polysiloxanes, and fluoropolymers. These coatings are discussed subsequently, followed by a section that discusses protection of architectural cast iron in atmospheric exposure ( Ref 15 ). Alkyd Coatings As a class, alkyd coating...
Abstract
Coating of cast irons is done to improve appearance and resistance to degradation due to corrosion, erosion, and wear. This article describes inorganic coating methods commonly applied to cast irons. The coating methods include plating, hot dip coating, conversion coating, diffusion coating, cladding, porcelain enameling, and thermal spray. Organic coatings have a wide variety of properties, but their primary use is for corrosion resistance combined with a pleasing colored appearance. The article discusses the various types of organic coatings applied to cast irons. Practically any degree of smoothness or roughness and requirement for color and gloss can be filled by organic coatings. The article describes abrasive blast cleaning, abrasive waterjet cleaning and finishing, vibratory finishing, barrel finishing, and shot peening for processing iron castings.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003692
EISBN: 978-1-62708-182-5
... Abstract This article discusses the coating systems categorized by the generic type of binder or resin and grouped according to the curing or hardening mechanism inherent within that generic type. It focuses on the properties, advantages, and limitations of various autooxidative cross-linked...
Abstract
This article discusses the coating systems categorized by the generic type of binder or resin and grouped according to the curing or hardening mechanism inherent within that generic type. It focuses on the properties, advantages, and limitations of various autooxidative cross-linked resins, thermoplastic resins, and cross-linked thermosetting resins. The autooxidative cross-linked resins include alkyd resins and epoxy esters. The article examines the two types of coatings based on thermoplastic resins: those deposited by evaporation of a solvent, commonly called lacquers, and those deposited by evaporation of water, a class of coatings called water-borne coatings. The coatings that chemically cross link by copolymerization, including epoxies, unsaturated polyesters, urethanes, high-temperature curing silicones, and phenolic linings, are also described.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006051
EISBN: 978-1-62708-172-6
... strength, abrasion resistance, and chemical resistance. Typically 100% solids Requires specialized spray equipment due to fast curing Concrete coatings for use in primary and secondary containment of chemical tanks. Elastomeric roof coatings Polyaspartic esters Fast curing; tolerant of low...
Abstract
A coating can be defined as a substance spread over a surface to provide protection or to serve decorative purposes. This article discusses two industrial coating components, namely, nonvolatile components such as the resin or binder, pigments, and any additives that may be incorporated into the formulation; and volatile components such as solvents, or water in emulsions and their composition. It provides general information on volatile organic compounds. The article describes the film-forming mechanisms of various coating types, namely, lacquers, chemically converting coatings, latex coatings, alkyds and other resins, which cure by oxidation, moisture-curing polyurethanes and inorganic zinc primers, and powder coatings. The article concludes with a discussion on the functions of the primer, intermediate coat, and topcoat in coating systems.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006014
EISBN: 978-1-62708-172-6
... to a commercial blast or better. Other high-performance finishes that often are used with a zinc-rich primer and epoxy intermediate coat are polyaspartics, polysiloxanes, and fluoropolymers. Preparing and Painting Cast Iron Cast iron is a ferrous metal like steel but has some important differences from...
Abstract
This article reviews the various substrates for coatings, namely, steel, cast iron, galvanized steel, aluminum, stainless steel, nonferrous metals, concrete, and wood. General guidance for surface preparation and coating selection is provided along with unique requirements for the particular substrate(s).
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006492
EISBN: 978-1-62708-207-5
... coatings and paints. It addresses some of the more common corrosion mechanisms, including corrosion driven by pH extremes, pitting corrosion, crevice corrosion, galvanic corrosion, and filiform corrosion. The article also describes in-plant as well as field application procedures for cleaning and coating...
Abstract
Although aluminum alloys are inherently corrosion resistant, there are many operating environments where they require additional protection. This article describes the conditions under which aluminum is prone to corrode and explains how to prevent it through the addition of conversion coatings and paints. It addresses some of the more common corrosion mechanisms, including corrosion driven by pH extremes, pitting corrosion, crevice corrosion, galvanic corrosion, and filiform corrosion. The article also describes in-plant as well as field application procedures for cleaning and coating, and discusses the advantages and limitations of the various materials and chemicals used.