Skip Nav Destination
Close Modal
Search Results for
polyalkylene glycol
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-14 of 14 Search Results for
polyalkylene glycol
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005932
EISBN: 978-1-62708-166-5
... Abstract This article describes various quenchants, namely, water and inorganic salt solutions, polymers (polyvinyl alcohol, polyalkylene glycol, polyethyl oxazoline, polyvinyl pyrrolidone and sodium polyacrylates), quench oils, and molten salts, which are used for heat treatment of ferrous...
Abstract
This article describes various quenchants, namely, water and inorganic salt solutions, polymers (polyvinyl alcohol, polyalkylene glycol, polyethyl oxazoline, polyvinyl pyrrolidone and sodium polyacrylates), quench oils, and molten salts, which are used for heat treatment of ferrous alloys. It also provides information on the steps for controlling quenching performance for polymer quenchants and oils with an emphasis on measuring quenchant performance, safety measures, and oxidation.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006260
EISBN: 978-1-62708-169-6
... be controlled by proper racking. It concludes with information on agitation and the quench tank system used in the quenching of aluminum alloys. agitation system aluminum alloys cooling rate immersion water quenching polyalkylene glycol polymer quenchants quench sensitivity quench...
Abstract
Quenching refers to the rapid cooling of metal from the solution treating temperature, typically between 465 and 565 deg C (870 and 1050 deg F) for aluminum alloys. This article provides an overview on the appropriate quenching process and factors used to determine suitable cooling rate. It describes the quench sensitivity and severity of alloys, quench mechanisms and the different types of quenchants used in immersion, spray, and fog quenching. The article provides a detailed description of the quench-factor analysis that mainly includes residual stress and distortion, which can be controlled by proper racking. It concludes with information on agitation and the quench tank system used in the quenching of aluminum alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006252
EISBN: 978-1-62708-169-6
... and fracture toughness, are not too adversely affected. The most effective thermal method of reducing residual stress is to alter the quenching medium. Polyalkylene glycol is one of the most effective quenchants available for reducing stress magnitudes while maintaining mechanical properties...
Abstract
The presence of macroscopic residual stresses in heat treatable aluminum alloys can give rise to machining distortion, dimensional instability, and increased susceptibility to in-service fatigue and stress-corrosion cracking. This article details the residual-stress magnitudes and distributions introduced into aluminum alloys by thermal operations associated with heat treatment. The available technologies by which residual stresses in aluminum alloys can be relieved are also described. The article shows why thermal stress relief is not a feasible stress-reduction technology for precipitation-hardened alloys. It examines the consequences of aging treatments on the residual stress, namely, annealing, precipitation heat treatment, and cryogenic treatment. The article provides information on uphill quenching, which attempts to reverse thermal gradients encountered during quenching. It examines how quench-induced residual stresses in heat treatable aluminum alloys are reduced when sufficient load is applied to cause plastic deformation. The article also shows how plastic deformation reduces residual stress.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005944
EISBN: 978-1-62708-166-5
... of the temperature difference between the probe temperature and the liquid sodium temperature. Fig. 1 Cooling curves of silver cylinder (10 mm diam × 30 mm, 0.4 in. diam × 1.2 in.) during quenching in representative quenchants with no agitation. PAG, polyalkylene glycol. Source: Ref 4...
Abstract
The use of gases or molten salts as the quenchant for steel parts is commonly limited to the quenching of high-alloy steel or the carbonizing quenching of low-alloy steel. This article reviews the quenching process of steels with molten metals (quenchant) such as molten lead, molten bismuth, and molten sodium. It also contains tables that list the physical properties of lead, bismuth, sodium, and molten sodium.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005230
EISBN: 978-1-62708-187-0
... and 85 °C (160 and 185 °F), boiling water, polyalkylene glycol, fluidized beds, forced air, and so on. The most common approach is to add polyalkylene glycol to the quench medium in varying proportions in order to control the quench rate and therefore quench distortion. A promising quenching medium...
Abstract
This article provides an overview of heat treatment processes, namely, solution heat treatment, quenching, and natural and artificial aging. It contains a table that lists various heat treatment tempers commonly practiced for nonferrous castings. The article describes microstructural changes that occur due to the heat treatment of cast alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003103
EISBN: 978-1-62708-199-3
... severities, or “H” values, for the common quenching media and conditions. These data are for media containing no additives. Considerable improvement in the cooling capability can be obtained by such additions as polyalkylene glycol (polymer) to water, proprietary additives to oil, and water to hot salt...
Abstract
Hardenability is usually the single most important factor in the selection of steel for heat-treated parts. The hardenability of steel is best assessed by studying the hardening response of the steel to cooling in a standardized configuration in which a variety of cooling rates can be easily and consistently reproduced from one test to another. These include the Jominy end-quench test, the carburized hardenability test, and the surface-area-center hardenability test. This article discusses the effects of varying carbon content as well as the influence of different alloying elements on hardenability of steels. The basic information needed before a steel with adequate hardenability can be specified as the as-quenched hardness required prior to tempering to final hardness that will produce the best stress-resisting microstructure; the depth below the surface to which this hardness must extend; and the quenching medium that should be used in hardening.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005923
EISBN: 978-1-62708-166-5
... quench chute. This is accomplished by proper selection of quenchant (and concentration in a polymer quenchant) and agitation. Excessive temperature rise in the quench chute can result in separation of quenchant (polyalkylene glycol, or PAG, type) or a very stable vapor phase (water or oil). Excessive...
Abstract
Quenchant agitation can be obtained by circulating quenchant in a quench tank through pumps and impellers. The selection of the agitation method depends on the tank design, type and volume of the quenchant, part design, and the severity of quench required. This article describes flow measurement methods, temperature control, materials handling, and filtration processes during the agitation process. The maintenance of quenching installations is also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003196
EISBN: 978-1-62708-199-3
Abstract
This article describes the heat treating (stress relieving, normalizing, annealing, quenching, tempering, martempering, austempering, and age hardening) of different types of steels, including ultrahigh-strength steels, maraging steels, and powder metallurgy steels. Tabulating the recommended temperatures for normalizing and austenitizing, it provides information on mechanism, cooling media, principal variables, process procedures, and applications of heat treating. In addition, the article gives a short note on the cold and cryogenic treatment of steel.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006288
EISBN: 978-1-62708-169-6
Abstract
This article focuses on the aging characteristics of solution and precipitation heat treated aluminum alloy systems and their corresponding types. It includes information on aluminum-copper systems, aluminum-copper-magnesium systems, aluminum-magnesium-silicon systems, aluminum-zinc-magnesium systems, aluminum-zinc-magnesium-copper systems, and aluminum-lithium alloys.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003996
EISBN: 978-1-62708-185-6
... for forgings include controlled-temperature water from 20 to 100 °C (75 to 212 °F), synthetic quenchants, such as polyalkylene glycol and others additives in water, and most recently alternate, proprietary quench technologies. All immersion quench media are designed to achieve the necessary quench...
Abstract
This article begins with discussion on forgeability and the factors affecting the forgeability of aluminum and aluminum alloys. It describes the types of forging methods and equipment and reviews critical elements in the overall aluminum forging process: die materials, die design, and die manufacture. The article discusses the critical aspects of various manufacturing elements of aluminum alloy forging, including the preparation of the forging stock, preheating stock, die heating, lubrication, trimming, forming and repair, cleaning, heat treatment, and inspection. It concludes with a discussion on the forging of advanced aluminum materials and aluminum alloy precision forgings.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006077
EISBN: 978-1-62708-172-6
... epoxy-based reactive diluents consist of monoepoxy compounds (aromatic and aliphatic monoglycidyl ethers) and di- or pol-functional epoxy compounds (diepoxides such as polypropylene glycol diepoxide, di- and triglycidyl ethers, and dioxides such as butadiene dioxide, vinylcyclohexane dioxide, and others...
Abstract
This article provides a detailed discussion on the principal classes and curatives of epoxy resins used in the coatings industry. The principal classes are bisphenol A epoxy, bisphenol F epoxy, epoxy phenol novolac, cycloaliphatic epoxies, epoxy acrylate, brominated bisphenol-A-based epoxy, phosphorus-containing epoxy, fluorinated epoxies, epoxy esters, epoxy phosphate esters, and waterborne epoxy. The principal curatives are amines, amine adducts, cyanoethylated amines, ketimines, polyoxyalkylene amines, cycloaliphatic amines, aromatic amines, polyamides, amido amines, and dicyandiamides. Other curatives include polyester co-polymers, phenolic co-polymers, melamine and urea formaldehyde co-polymer resins, phosphate flame retardants, ultraviolet and electron beam curing of epoxy resins, Mannich bases, Mannich-based adducts, and anhydrides. The article concludes by discussing the concerns regarding the use of epoxy coatings.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003053
EISBN: 978-1-62708-200-6
... (solvent) 13.7 0.48 Aluminum oxide (ceramic powder) 100.0 3.5 Mixed phthalates (plasticizer) 3.6 0.13 Polyalkylene glycol (plasticizer) 4.3 0.15 Polyvinyl butyral (binder) 4.0 0.14 Nonoxidizing sintering atmospheres (a) Menhaden fish oil (dispersant) 1.0 0.035 Methyl...
Abstract
Ceramic-forming processes usually start with a powder which is then compacted into a porous shape, achieving maximum particle packing density with a high degree of uniformity. This article compares and contrasts several forming processes, including mechanical consolidation, dry pressing, cold isostatic pressing, slip casting, tape casting, roll compaction, extrusion, and injection molding. It describes the advantages, equipment and tooling, and material requirements of green machining, the machining of ceramics in an unfired state with the intent of producing parts as close to as possible to their final shape. The article also provides useful information on drying methods, shrinkage, and defects as well as the removal of organic processing aids such as dispersants, binders, plasticizers, and lubricants.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
Abstract
This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron, zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging of the as-quenched supersaturated solid solution. The article briefly discusses these processes of precipitation hardening. It also reviews precipitation in various alloy systems, including 2xxx, 6xxx, 7xxx, aluminum-lithium, and Al-Mg-Li systems.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
Abstract
This article describes the fundamental concepts of heat treatment simulation, including the physical events and their interactions, the heat treatment simulation software, and the commonly used simulation strategies. It summarizes material data needed for heat treatment simulations and discusses reliable data sources as well as experimental and computational methods for material data acquisition. The article provides information on the process data needed for accurate heat treatment simulation and the methods for their determination. Methods for validating heat treatment simulations are also discussed with an emphasis on the underlying philosophy for the selection and design of validation tests. The article also discusses the applications, capabilities, and limitations of heat treatment simulations via selected industrial case studies for a better understanding of the effect of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings.