Skip Nav Destination
Close Modal
Search Results for
ply thickness
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 180
Search Results for ply thickness
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003442
EISBN: 978-1-62708-195-5
... Abstract Characterization of nonmechanical properties is performed in the testing and certification of composite materials. This article focuses on the properties of composites that are commonly investigated. The properties include: per ply thickness; constituent content; density; coefficient...
Abstract
Characterization of nonmechanical properties is performed in the testing and certification of composite materials. This article focuses on the properties of composites that are commonly investigated. The properties include: per ply thickness; constituent content; density; coefficient of thermal expansion and coefficient of moisture expansion; glass transition temperature; thermal conductivity, diffusivity, and specific heat.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009077
EISBN: 978-1-62708-177-1
.../cure cycle adds another variable that dictates the final performance. While through-thickness uniformity is usually assumed, fiber volume variations, void content, ply orientation variability, foreign objects, and other factors can degrade the composite performance. Some of these variables can...
Abstract
Analyzing the structure of composite materials is essential for understanding how the part will perform in service. Assessing fiber volume variations, void content, ply orientation variability, and foreign object inclusions helps in preventing degradation of composite performance. This article describes the optical microscopy and bright-field illumination techniques involved in analyzing ply terminations, prepreg plies, splices, and fiber orientation to provide the insight necessary for optimizing composite structure and performance.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003439
EISBN: 978-1-62708-195-5
... in the composite materials form. Prepreg properties are included in this level, although they are sometimes included in the constituent level or even broken out into a separate level. Key properties include fiber areal weight, matrix content, void content, cured ply thickness, lamina tensile strengths and moduli...
Abstract
Composites are complex engineered materials that often behave differently than common isotropic materials. Before testing a composite material, or before ordering or supervising such testing, the responsible party should review certain considerations. This article provides an overview of such considerations, namely, the differences between the testing of composites and testing of isotropic materials, role of certification agencies and importance of their involvement, building-block approach to composites testing, determining the purpose of testing, normalizing results, and statistical data reduction.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003394
EISBN: 978-1-62708-195-5
..., material, ply boundary, or the lay-up skin-related items, such as flat patterns, are easily updated when changes are made to the part. As the design progresses, the actual laminate can be analyzed and the number of plies, thickness, materials, and true fiber orientations can be verified. Complete Part...
Abstract
Continuous fiber composite materials offer dramatic opportunities for producing lightweight laminates with tremendous performance capabilities. This article describes the kinematics of fabric deformation and explains the algorithms used in draping simulation. It discusses the basic components, such as laminate and ply, of continuous fiber composite. The article provides information on the core sample and ply analysis. It details producibility, flat-pattern evaluations, and laminate surface offset. The article discusses various interfaces, such as the structural analysis interface, the resin transfer molding interface, the fiber placement and tape-laying interface, and the laser projection interface.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003390
EISBN: 978-1-62708-195-5
... (lay-up sequences including material, orientation, and ply thickness) Results of calculations If legacy databases exist, consideration must be given to importing old data into the new databases. Text files are the easiest to manipulate; commercial engines probably require a special utility...
Abstract
This article begins with a discussion on the criteria for evaluating computer programs for composites structural analysis, including database capabilities, types of engineering calculations supported, interface and operating systems, and technical support. It describes the capabilities of programs, such as CompositePro, ESAComp, and V-Lab that provide a graphical interface, built-in databases, and integrated modules for the different types of analyses. The article reviews the modules of other programs used for composite analysis. The programs include ASCA, CADEC, CoDA, COMPASS, ESDU, LAP, PROMAL, and SACL. The article concludes with information on on-line programs and recourses.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003378
EISBN: 978-1-62708-195-5
... ( z i 3 − z i − 1 3 ) where K is the total number of plies, z i is defined as in Fig. 4 , and superscript i denotes a property of the i th ply. Note that z i – z i –1 is equal to the ply thickness. Here the reduced lamina stiffnesses for the i th ply are found...
Abstract
The properties of unidirectional composite (UDC) materials are quite different from those of conventional, metallic materials. This article provides information on the treatment of UDC stress-strain relations in the forms appropriate for analysis of thin plies of material. It explains the development of the relations between mid-surface strains and curvatures and membrane stress and moment resultants. The article discusses the properties, such as thermal expansion, moisture expansion, and conductivity, of symmetric laminates and unsymmetric laminates. It describes the distribution of temperature and moisture through the thickness of a laminate. Stresses caused due to mechanical loads, temperature, and moisture on the laminate are analyzed. The article concludes with information on interlaminar cracking, free-edge delamination, and transverse cracks of laminates.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003418
EISBN: 978-1-62708-195-5
...° rolling With thin prepregs, a full overlap (double ply) could be used, although it is usually easier to start wrapping with a one-ply thickness before moving into the two-ply-thick material. Good design practice dictates that the overlap be made in equal circumferential wrap increments...
Abstract
This article describes processes and equipment that are used to produce composite tubular parts. The processes include sheeting, pattern cutting, tube rolling, shrink tape debulking, and finishing. The article provides a discussion on materials that are most suitable for tube rolling: preimpregnated materials and unidirectional tapes. The article also discusses wrapping techniques of cylindrical and tapered tubes, such as convolute and spiral wrapping.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003044
EISBN: 978-1-62708-200-6
... of layers of the same material with equal ply thickness by simply listing the ply orientations from the top of the laminate to the bottom. Thus, the notation [0°/90°/0°] uniquely defines a three-layer laminate. The angle denotes the orientation of the principal material axis, x 1 , within each ply...
Abstract
Testing of fiber-reinforced composite materials is performed to determine uniaxial tensile strength, Young's modulus, and Poisson's ratio relative to principal material directions, that helps in the prediction of the properties of laminates. Beginning with an overview of the fundamentals of tensile testing of fiber-reinforced composites, this article describes environmental exposures that often occur during specimen preparation and testing. These include exposures during specimen preparation, and planned exposure such as moisture, damage (impact), and thermal cycling techniques. The article also discusses the test procedures, recommended configurations, test specimen considerations, and safety requirements considered in the four major types of mechanical testing of polymer-matrix composites: tensile test, compression test, flexural test, and shear test.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003392
EISBN: 978-1-62708-195-5
... are evaluated based on weight, cost, and thickness. Laminate weight will obviously affect the final weight of the part, cost will relate the material investment, and thickness will compare the material characteristics per ply. Therefore, consider that currently: Fiberglass provides the greatest strength...
Abstract
This article describes common design criteria and identifies the design considerations that have a significant effect on the end product. The design criteria include cost, size, mechanical properties, repeatability and precision of parts, damage tolerance and durability, and environmental constraints.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009079
EISBN: 978-1-62708-177-1
... to the composite constituents, the lay-up and composite construction influences the microcracking response to applied mechanical loads and thermal cycles. The interlayer thickness and modulus, ply orientations, thickness of the ply layers, and the grouping of the plies affect the stress/strain levels at which...
Abstract
This article describes the microcrack analysis of composite materials using bright-field illumination, polarized light, dyes, dark-field illumination, and epi-fluorescence.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003409
EISBN: 978-1-62708-195-5
... is still preferred for large, thick simple parts. Technique Description The process of lay-up definition through to bagging for resin-curing comprises the following five stages: lay-up definition, ply-kit cutting, lay- up, debulking, and preparation for curing. Lay-Up Definition The lay-up...
Abstract
The prepreg hand lay-up process is a versatile, reliable, cost-effective, and high quality process for fabricating large or small components. This article discusses the technique characteristics and applications of the process. It describes the stages involved in the process of lay-up, namely, lay-up definition, ply-kit cutting, layup, debulking, and preparation for curing. The article concludes with a discussion on the component properties and design guidelines of the prepreg hand lay-up process.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003412
EISBN: 978-1-62708-195-5
... Types and Functions The materials usually used in preparing a lay- up for autoclave curing are peel ply (optional), separator, bleeder, barrier, breather, dam (depending on laminate thickness and tooling), and vacuum bag. The materials shown in Fig. 1 and 2 represent complex lay-ups...
Abstract
Curing is the irreversible change in the physical properties of a thermosetting resin brought about by a chemical reaction, condensation, ring closure, or addition. This article discusses the material types and functions of various components considered in the preparation for curing. It presents a discussion on the major elements of an autoclave system, namely, pressure vessel, gas stream heating and circulation sources, gas stream pressurizing systems, loading systems, and vacuum systems. The article describes a computerized approach to the simultaneous control of materials reaction behavior and consolidation dynamics, using an autoclave as the reaction vessel.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003432
EISBN: 978-1-62708-195-5
... This parameter is the weight of dry reinforcing fiber in the prepreg per unit area. The fiber weight, in conjunction with the resin solids content, allows the manufacturer and user to predict the theoretical ply thickness and the resultant fabricated part thickness. This property is obtained from the same sample...
Abstract
This article focuses on epoxy because this resin category has widespread use and because it is tested using quality control measures typical of most resin systems. It explains that a typical resin system will consist of one or more epoxy resins, a curing agent, and a catalyst to control the rate of reaction. The article describes the component material tests, mixed resin system tests, and prepreg tests for the resin system. These tests include high-performance liquid chromatography, infrared spectroscopy, and gel permeation chromatography. The article contains a table that lists typical resin and prepreg property tests.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006878
EISBN: 978-1-62708-387-4
... that is characteristic of in-plane shear failure, with the step size the order of the ply thickness. Longitudinal ply splits extend along the 0° direction within the step and appear to correspond to steps in the fiber fracture surface ( Ref 21 , 34 ). From a fractographic perspective, the inclination of the step can...
Abstract
This article presents the failure of polymer-matrix composites and the methodology for fractography. It provides a detailed discussion on the types of translaminar, interlaminar, and intralaminar failures. The article also presents a discussion on the types of fatigue failures, and the influence of composite architecture. It provides details of the fractography associated with defects and damage.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003360
EISBN: 978-1-62708-195-5
... with multiple plies of unidirectional tape oriented to the designer's choice. These tapes are available in the same widths and package sizes as unidirectional tape, with varying thickness. Up to four or five plies of tape, with each ply typically being 0.125 mm (0.005 in.), can be plied together in various...
Abstract
This article describes the types of fabrics and preforms used in the manufacture of advanced composites and related selection, design, manufacturing, and performance considerations. The types of fabrics and preforms include unidirectional and two-directional fabrics; multidirectionally reinforced fabrics; hybrid fabrics; woven fabric prepregs; unidirectional and multidirectional tape prepregs; and the prepreg tow. The article discusses three major categories of tape manufacturing processes, namely, the hand lay-up, machine-cut patterns that are laid up by hand, and the automatic machine lay-up. It provides a description of the two classes of prepregs. These include those that are suitable for high-performance applications and suitable for lower-performance molding compounds.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009078
EISBN: 978-1-62708-177-1
... illumination, 65 mm macrophotograph Some processing methods and lay-ups are more susceptible to air entrapment. Parts having tight radii and complex shapes are more apt to have voids located in the low-pressure areas. Likewise, tubular composite parts that have thick cross sections and high ply angles...
Abstract
Voids in fiber-reinforced composite materials are areas that are absent of the composite components: matrix (resin) and fibers. Voids have many causes but generally can be categorized as voids due to volatiles or as voids that result from entrapped air. This article describes the analysis of various types of voids. It reviews techniques for analysis of voids at ply-drops, voids due to high fiber packing, and voids that occur in honeycomb core composites. The final section of the article discusses void documentation through the use of nondestructive inspection techniques and density/specific gravity measurement methods.
Image
in Viewing Composite Specimens Using Reflected Light Microscopy[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 2 Composite cross section showing many of the different facets that are usually investigated using reflected-light bright-field illumination. Shown in the cross section are voids (dark areas), ply terminations (i.e., ply drops), carbon fiber plies having different thicknesses, different
More
Image
Published: 01 January 2001
Fig. 3 Static and fatigue ply drop-off test specimen. (1) Bond fiberglass-epoxy tabs with epoxy film adhesive. (2) Specimen thickness shall not vary more than ±0.13 mm (0.005 in.). (3) Specimen longitudinal edges shall be parallel to 0.13 mm (0.005 in.). (4) Top end and bottom end surfaces
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003385
EISBN: 978-1-62708-195-5
... is shown in Fig. 2 , where the 0° degree ply direction is parallel to the x -axis of the plate. In this plot, the buckling load is normalized by the layer fiber-direction modulus, ( E 1 ). For a square panel, the optimal laminate for buckling uses all ±45° layers. The other counter-intuitive result...
Abstract
This article focuses on the unique characteristics of composites and laminated plates, including orthotropic, anisotropic, and unsymmetric plates. It discusses the stability issues associated with practical, structural laminates based on the finite stack effects and transverse shear stiffness effects. The article presents the study of instability associated with postbuckling behavior and hygrothermal buckling in composite sandwich panels and shell panels.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003416
EISBN: 978-1-62708-195-5
... or thick-walled structures, particularly structures of revolution such as cylinders or pressure vessels, are most easily wound. Fig. 4 Complex winding patterns for the V-22 grip assembly. Courtesy of McClean Anderson, Inc. Fig. 5 In situ reentrant filament-wound joint...
Abstract
Filament winding is a process for fabricating a composite structure in which continuous reinforcements, either previously impregnated with a matrix material or impregnated during winding, is placed over a rotating form or mandrel in a prescribed way to meet certain stress conditions. This article describes the advancements in filament winding and lists the advantages and disadvantages of filament winding. It discusses the effects of fiber tension in filament winding and the selection of fibers, resins, and materials for filament winding. The article emphasizes the three basic filament-winding patterns, such as helical, polar, and hoop. It presents information on the applications of filament winding, including rocket motors, natural gas vehicle (NGV) tanks, and sporting goods. The article presents recommendations for the basic design guidelines for filament-winding design/manufacturing process and concludes with a discussion on fabrication recommendations.
1