Skip Nav Destination
Close Modal
Search Results for
platinum-base alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 351 Search Results for
platinum-base alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003776
EISBN: 978-1-62708-177-1
... micrographs, comparing and contrasting the microstructural features of gold, platinum, iridium, palladium, and ruthenium-base alloys. It examines pure gold, intermetallic gold compounds, gold and platinum jewelry alloys, platinum-containing shape memory alloys, and alloys consisting of platinum, aluminum...
Abstract
This article explains how to prepare precious metal test samples for metallographic examination. It discusses cutting, mounting, grinding, polishing, and etching and addresses some of the challenges of working with small, relatively soft specimens. It includes dozens of example micrographs, comparing and contrasting the microstructural features of gold, platinum, iridium, palladium, and ruthenium-base alloys. It examines pure gold, intermetallic gold compounds, gold and platinum jewelry alloys, platinum-containing shape memory alloys, and alloys consisting of platinum, aluminum, and copper.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003150
EISBN: 978-1-62708-199-3
... to 1 1 2 in.) inside diameter by 0.25 to 0.6 mm (0.010 to 0.025 in.) wall thickness and as single lengths about 150 mm (6 in.) long. Base metal tube is available with an outer cladding or an inner lining of platinum, gold, silver, or any of the commercial precious metal alloys. Precious...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005670
EISBN: 978-1-62708-198-6
... modern stents noble metals osmium palladium physical properties platinum precious metals rhodium ruthenium traditional amalgam alloys THE FOCUS of this article is a review of noble and precious metal use for biomedical applications. The noble metals include gold, platinum, palladium...
Abstract
This article focuses on the use of noble and precious metals for biomedical applications. These include gold, platinum, palladium, ruthenium, rhodium, iridium, and osmium. The physical and mechanical properties of noble and precious metals are presented in tables. A brief discussion on the ancient history of noble and precious metal use in dentistry is provided. The article discusses the use of direct gold dental filling materials, direct silver dental filling materials, traditional amalgam alloys, high-copper amalgam alloys, and gallium alloys in biomedical applications. It also provides information on gold coatings and iridium oxide coatings for stents.
Book Chapter
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001087
EISBN: 978-1-62708-162-7
... (0.010 to 0.025 in.) wall thickness and as single lengths about 150 mm (6 in.) long. Base metal tube is available with an outer cladding or an inner lining of platinum, gold, silver, or any of the commercial precious metal alloys. Precious Metal Powders Precious metal powders are produced...
Abstract
Precious metals are of inestimable value to modern civilization. This article discusses the resources and consumption, trade practices, and special properties of precious metals and its alloys, including ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold, and tabulates the industrial applications of precious metals. It provides information on the commercial forms (wire, rod, sheet, strip, ribbon, and foil) and uses of precious metals, including semifinished products, precious metal powders, industrial uses, coatings, and jewelry.
Book Chapter
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001088
EISBN: 978-1-62708-162-7
...-Base Brazing Filler Metals Commercial Names Common Name Silver brazing filler metals Former Names Silver solders, hard solders, silver-brazing alloys Specifications ANSI/AWS A5.8 Chemical Composition Composition Limits See Table 1 . Nominal composition...
Abstract
This article discusses the chemical composition, fabrication characteristics, applications, mechanical properties, mass characteristics, thermal properties, electrical properties, optical properties, and chemical properties of precious metals, namely, silver, gold, platinum, and palladium and their corresponding alloys.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003829
EISBN: 978-1-62708-183-2
... and alloys. The available information on the corrosion resistance of each element varies widely. Generally, more data are available for the more abundant, more easily fabricated elements. Silver and platinum have been evaluated in more environments than the other elements. Conversely, very little data...
Abstract
This article characterizes the corrosion resistance of precious metals, namely, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold. It provides a discussion on the general fabricability; atomic, structural, physical, and mechanical properties; oxidation and corrosion resistance; and corrosion applications of these precious metals. The article also tabulates the corrosion rates of these precious metals in corrosive environment, namely, acids, salts, and halogens.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001254
EISBN: 978-1-62708-170-2
... of the metal, limits its use as a corrosion protection layer. Therefore, an electroplated base coating must be used. Silver and silver-tin alloys (with varying concentrations of tin) have exhibited excellent field service behavior and are now applied for decorative as well as engineering purposes. Nickel...
Abstract
The electroplating of platinum-group metals (PGMs) from aqueous electrolytes for engineering applications is limited principally to palladium and, to a lesser extent, to platinum, rhodium, and thin layers of ruthenium. This article provides a discussion on the plating operations of these PGMs along with the types of anodes used in the process.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006017
EISBN: 978-1-62708-175-7
... historical developments in powder metallurgy Date Development Origin 3000 B.C. “Sponge iron” for making tools Egypt, Africa, India 1200 A.D. Cementing platinum grains South America (Incas) 1781 Fusible platinum-arsenic alloy France, Germany 1790 Production of platinum-arsenic...
Abstract
Powder metallurgy (PM) has been called a lost art. Long before furnaces were developed that could approach the melting point of metal, PM principles were used. This article provides an overview of the major historical developments of various methods of platinum powder production. The development of production methods took place in various phases starting from prehistoric time, post-war period, to recent and commercial period. The article discusses the powder metallurgy of platinum, as well as the commercial and post-war developments of PM. Literature and trade associations are also discussed.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001098
EISBN: 978-1-62708-162-7
... because of its versatility and low cost. In this couple, the positive thermoelement is iron and the negative thermoelement is constantan, a 44Ni-55Cu alloy. As shown in Fig. 4 , the emf of iron is positive with reference to platinum, but the emf of constantan is the most negative with respect to platinum...
Abstract
This article provides an in-depth review of thermocouples and the metals from which they are made. It explains how dissimilar metal conductors in contact at opposite ends can generate an electromotive force if the junctions are heated or cooled to different temperatures. The article discusses thermocouple circuits and instrumentation, calibration methods, insulation requirements, operating ranges, measurement errors, and maintenance procedures. It also provides property data and emf curves for common metals and thermocouple types, and contains information on color coding used around the world.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006259
EISBN: 978-1-62708-169-6
... Abstract This article describes the annealing behavior of precious metals, namely, gold, silver, platinum, palladium, iridium, rhodium, ruthenium, and osmium. It discusses the annealing practices and their effect on the basic properties of common precious metal alloys. The article presents...
Abstract
This article describes the annealing behavior of precious metals, namely, gold, silver, platinum, palladium, iridium, rhodium, ruthenium, and osmium. It discusses the annealing practices and their effect on the basic properties of common precious metal alloys. The article presents the typical properties and compositions of silver-copper alloys and gold jewelry alloys such as colored gold alloys and white gold alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001097
EISBN: 978-1-62708-162-7
... on other contact materials—notably, copper and copper-base materials. Other types of contacts used include the platinum group metals, tungsten, molybdenum, copper, copper alloys, and mercury. Aluminum is generally a poor contact material because it oxidizes readily, but is used in some contact applications...
Abstract
Electrical contacts are metal devices that make and break electrical circuits. This article provides information on materials selection criteria and failure modes of make-break contacts. It describes the property requirements for make-break arcing contacts, namely, electrical conductivity, mechanical properties, chemical properties, fabrication properties, and thermal properties. The article presents a brief note on brush contact materials and their interdependence factors for sliding contacts. It also describes the type of commercial contact materials for electrical contacts, namely, copper metals, silver metals, gold metals, metals of the platinum group, precious metal overlays, tungsten and molybdenum, aluminum, and composite materials. Finally, the article provides information on composite manufacturing methods, and tabulates the physical, and mechanical properties of electrical contact materials, including copper, silver, gold, platinum, palladium, and composites.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003158
EISBN: 978-1-62708-199-3
..., and great versatility of application. Thermocouples are grouped into two broad categories, namely, standard thermocouples, including five base-metal thermocouples and three noble-metal thermocouples that have been given letter designations, and nonstandard thermocouples, including iridium-rhodium, platinum...
Abstract
Thermocouple devices are the most widely used devices for measurement of temperature in the metals industry. Favorable characteristics of these devices include good accuracy, suitability over a wide temperature range, fast thermal response, ruggedness, high reliability, low cost, and great versatility of application. Thermocouples are grouped into two broad categories, namely, standard thermocouples, including five base-metal thermocouples and three noble-metal thermocouples that have been given letter designations, and nonstandard thermocouples, including iridium-rhodium, platinum-molybdenum, platinel, and tungsten-rhenium thermocouples. This article discusses the basic principles, classification, and properties of thermocouples, and the techniques for insulating and protecting thermocouple wires from the operating environment.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003157
EISBN: 978-1-62708-199-3
... of impacted dirt, with a sulfide film acting as a dirt catcher. For many applications, silver is too soft to give acceptable mechanical wear. Alloying additions of copper, cadmium, platinum, palladium, gold, and other elements are effective in increasing the hardness and modifying the contact behavior...
Abstract
Electrical contacts are metal devices that make and break electrical circuits. This article describes the property requirements such as electrical conductivity, mechanical properties, chemical properties, fabrication properties, and thermal properties of make-break arcing contacts. The article also focuses on brush contact materials and their interdependence factors for sliding contacts. In addition, the article discusses the properties, manufacturing methods, and applications of electrical contact materials, including wrought materials such as copper metals, silver metals, gold metals, precious metal overlays, tungsten, molybdenum, and aluminum, and composite materials. It concludes by discussing the composite manufacturing methods such as infiltration, press-sinter, press-sinter-repress process, press-sinter-extrude process, internal oxidation, and preoxidized-press-sinter-extrude process, and coprecipitation.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003181
EISBN: 978-1-62708-199-3
... alloys, titanium alloys, and platinum metals. It discusses the formability, equipment and tooling, and lubricants used in the forming operations of these nonferrous metals. formability forming equipment forming operations lubricants nonferrous metals tooling Forming of Aluminum Alloys...
Abstract
This article provides a detailed account on forming operations (blanking, piercing, press-brake forming, contour rolling, deep drawing, cold forming, and hot forming) of various nonferrous metals, including aluminum alloys, beryllium, copper and its alloys, magnesium alloys, nickel alloys, titanium alloys, and platinum metals. It discusses the formability, equipment and tooling, and lubricants used in the forming operations of these nonferrous metals.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006556
EISBN: 978-1-62708-290-7
..., laser AM is still an expensive manufacturing process and will most likely be more applicable to gold-, platinum-, and palladium-base alloys. Platinum and palladium alloys have an advantage in AM, because conventional casting of these alloys continues to be far more challenging when compared to gold...
Abstract
The additive manufacturing technologies in the casting of precious metals are divided into two groups: indirect metal methods and direct metal methods. Besides providing a process overview of both of these methods, the focus of this article is on the characteristics, process steps, applications, and advantages of direct metal methods, namely laser melting, material extrusion, binder jetting, material jetting, and vat photopolymerization methods.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001454
EISBN: 978-1-62708-173-3
... and BAg groups. Pure gold and gold-base alloys can be brazed with materials from the BAu or BAg metals. Pure silver and silver-base alloys can be brazed with the BAg and, in some cases, the BCuP (see Fig. 1 ) filler metals. Platinum and palladium are brazeable with pure gold (which melts at 1063 °C...
Abstract
Copper, copper alloys, and precious metals are probably the most easily brazed metals because of their resistance to oxidation at high temperatures. This article provides a brief discussion on the metallurgy of copper, copper alloys, and precious metals and discusses the filler metals, brazing fluxes, joint clearance and design, and different brazing processes used in brazing of copper, copper alloys, and precious metals.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003591
EISBN: 978-1-62708-182-5
... Abstract This article discusses two approaches for determining gaseous corrosion rates, one based on indirect (discontinuous) measurements, the other based on direct (continuous) measurements. It explains how corrosion rate data can be obtained indirectly by measuring scale thickness, scale...
Abstract
This article discusses two approaches for determining gaseous corrosion rates, one based on indirect (discontinuous) measurements, the other based on direct (continuous) measurements. It explains how corrosion rate data can be obtained indirectly by measuring scale thickness, scale weight per unit surface area, loss of metal thickness, loss of material weight per unit surface area, or weight change of oxidant bonded in the scale per unit surface area as a function of time. It also describes several continuous methods, including volumetric measurements, the manometric method, and thermogravimetric analysis, and the conditions under which they can be used.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005445
EISBN: 978-1-62708-196-2
... 90Ag-10Pd 30 5.3 90Ag-10Au 40 4.2 60Ag-40Pd 8 23 70Ag-30Pd 12 14.3 Platinum and platinum alloys Platinum 16 10.6 95Pt-5Ir 9 19 90Pt-10Ir 7 25 85Pt-15Ir 6 28.5 80Pt-20Ir 5.6 31 75Pt-25Ir 5.5 33 70Pt-30Ir 5 35 65Pt-35Ir 5 36 95Pt-5Ru 5.5...
Abstract
This article contains a table that lists the electrical conductivity and resistivity of selected metals, alloys, and materials at ambient temperature. These include aluminum and aluminum alloys; copper and copper alloys; electrical heating alloys; instrument and control alloys; relay steels and alloys; thermostat metals; electrical contact materials; and magnetically soft materials.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003602
EISBN: 978-1-62708-182-5
... loading. Johnson Matthey Technology Centre (J-M) presented data that resulted in improved performance in nearly direct proportion to that expected based on the platinum increase ( Ref 25 ). Initial tests by J-M confirmed previous results: using platinum alloy catalyst with a 10 wt% net platinum loading...
Abstract
This article describes the ideal performance of various low-temperature and high-temperature fuel cells that depends on the electrochemical reactions that occur between different fuels and oxygen. Low-temperature fuel cells, such as polymer electrolyte, alkaline, and phosphoric acid, and high-temperature fuel cells, such as molten carbonate and solid oxide, are discussed. The article contains tables that provide information on the evolution of cell-component technology for these fuel cells. It concludes with information on the advantages and limitations of the fuel cells.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003834
EISBN: 978-1-62708-183-2
..., aluminum alloys, and the refractory metals. However, there are exceptions, such as when the oxide film on the metal surface is very thin and dense and its hardness is much higher than that of the base metal. Finally, some combinations of metals are thermally unstable and form brittle intermetallic...
Abstract
This article describes the principal cladding processes and methods for calculating properties of clad metals. It reviews the designing processes of clad metals to achieve specific requirements. The article discusses six categories of clad metal systems designed for corrosion control: noble metal clad systems, corrosion barrier systems, sacrificial metal systems, transition metal systems, complex multilayer systems, and clad diffusion alloys.
1