Skip Nav Destination
Close Modal
Search Results for
plastic collapse
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 330 Search Results for
plastic collapse
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2010
Fig. 2 Idealized geometry of Hamilton's model. (a) Plastic collapse of asperities. (b) Effective final thickness of bond zone. Source: Ref 6
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001477
EISBN: 978-1-62708-173-3
... fracture, plastic collapse, fatigue, creep, corrosion, and buckling. This article focuses on the broad categories of these failure modes: fracture, fatigue, environmental cracking, and high-temperature creep. It also discusses the benefits of a fitness-for-service approach. brittle fracture buckling...
Abstract
Fitness-for-service assessment procedures can be used to assess the integrity, or remaining life, of components in service. Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes: brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. This article focuses on the broad categories of these failure modes: fracture, fatigue, environmental cracking, and high-temperature creep. It also discusses the benefits of a fitness-for-service approach.
Image
in Failure Analysis and Life Assessment of Structural Components and Equipment
> Failure Analysis and Prevention
Published: 01 January 2002
of the applied stress at design load to the applied stress at plastic collapse. Similar to the CEGB R6 curve, points beneath the curve are considered safe and points on or above the curve are considered unacceptable.
More
Image
in Failure Prevention through Life Assessment of Structural Components and Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
ratio, which is the ratio of the applied stress at design load to the applied stress at plastic collapse. Similar to the CEGB R6 curve, points beneath the curve are considered safe, and points on or above the curve are considered unacceptable.
More
Image
Published: 01 January 1996
Fig. 10 Failure assessment diagram based on the stress intensity ratio ( K r = K / K c ) and stress ratio ( S r = σ/σ fc ) where σ fc is the plastic collapse stress. General regions are shown for linear elastic fracture mechanics (LEFM) and elastic plastic fracture mechanics (EPFM).
More
Image
Published: 01 January 1996
Fig. 27 Failure assessment diagram concept for assessing cracked components for brittle fracture and plastic collapse
More
Image
Published: 01 January 2002
Fig. 4 Failure assessment diagram concept for assessing cracked components for brittle fracture and plastic collapse
More
Image
Published: 01 January 2002
Fig. 9 Crack-tip opening displacement (CTOD) toughness, HSLA 50. δ, CTOD; δ c , CTOD fracture toughness, no significant stable crack extension, unstable fracture; δ e , elastic component of CTOD; δ m , CTOD fracture toughness, significant stable crack extension, plastic collapse; δ p , plastic
More
Image
Published: 01 January 1996
Fig. 3 Schematic representation of a crack growing in service under fatigue loading. Failure occurs if a f ≥ a c . a 0 , start-of-life defect size; a f , defect size due to fatigue crack growth; a c , critical defect size due to unstable fracture or plastic collapse
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003513
EISBN: 978-1-62708-180-1
... approach of Dowling and Townley ( Ref 11 ). The CEGB approach ( Ref 3 , 12 , 13 ) addressed post-yield fracture by an interpolation formula between two limiting cases: linear elastic fracture and plastic collapse. The interpolation formula, known as the failure assessment or R6 curve ( Fig. 1...
Abstract
Optimized modeling of fracture-critical structural components and connections requires the application of elastic-plastic fracture mechanics. Such applications, however, can require sophisticated analytical techniques such as crack tip opening displacement (CTOD), failure assessment diagram (FAD), and deformation plasticity failure assessment diagram (DPFAD). This article presents the origin and description of FAD and addresses R6 FAD using J-integral. It details the fracture criteria of BS 7910. The factors to be considered during the use of FAD and the applications of FAD are also reviewed.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002383
EISBN: 978-1-62708-193-1
... to be followed for LEFM cases is reviewed in this article, along with elastic-plastic fracture mechanics (EPFM) and plastic fracture mechanics (PFM) procedures. The problem will be approached generally to show that LEFM and PFM are special cases of EPFM. Because the so-called “collapse condition” is crucial...
Abstract
This article discusses the conditions for collapse in center-cracked panels and describes the energy criterion for fracture. Measurement of toughness of any material by means of tensile and crack test is discussed. The procedures to be followed for linear elastic fracture mechanics cases are reviewed, along with elastic-plastic fracture mechanics and plastic fracture mechanics procedures with the aid of residual strength diagram. The article also explains the geometry factors needed to determine the toughness of materials.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006823
EISBN: 978-1-62708-329-4
... is a tool that establishes the acceptability of cracklike flaws based on failure mechanisms, unstable fracture, and plastic collapse. Finally, it should be noted that while all of the analyses presented in this article are real analyses that were conducted on real failed or corroded equipment, the numbers...
Abstract
This article illustrates the use of the American Petroleum Institute (API) 579-1/ASME FFS-1 fitness-for-service (FFS) code (2020) to assess the serviceability and remaining life of a corroded flare knockout drum from an oil refinery, two fractionator columns affected by corrosion under insulation in an organic sulfur environment, and an equalization tank with localized corrosion in the shell courses in a chemicals facility. In the first two cases, remaining life is assessed by determining the minimum thickness required to operate the corroded equipment. The first is based on a Level 2 FFS assessment, while the second involves a Level 3 assessment. The last case involves several FFS assessments to evaluate localized corrosion in which remaining life was assessed by determining the minimum required thickness using the concept of remaining strength factor for groove-like damage and evaluating crack-like flaws using the failure assessment diagram. Need for caution in predicting remaining life due to corrosion is also covered.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002384
EISBN: 978-1-62708-193-1
... are: Unstable fracture (brittle or ductile) Ductile fracture Plastic collapse Buckling Fatigue Corrosion fatigue Corrosion Stress-corrosion cracking Hydrogen-induced cracking The first four modes of failure occur under static load. While brittle fracture can occur at nominal...
Abstract
This article discusses the various options for controlling fatigue and fractures in welded steel structures, with illustrations. It describes the factors that influence them the most. The article details some of the leading codes and standards for designing against failure mechanisms. Codes are presented for fitness-for-service and standards for fatigue and fracture control.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002386
EISBN: 978-1-62708-193-1
... conditions of plastic collapse and linear (elastic) fracture mechanics. The CEGB R6 method ( Ref 1 ) uses a failure assessment diagram ( Fig. 10 ), which plots the ratio K r = K / K c versus the ratio S r = σ/σ fc (where σ fc is the stress for plastic collapse). This normalization makes...
Abstract
This article describes the basis of operating stress maps based on failure assessment diagrams, which are used to assess potential fracture in the whole range of conditions from brittle to fully plastic behavior. It discusses the factors influencing the process of constructing an operating stress map based on the principles used in constructing a residual strength diagram. These include plane strain fracture toughness, net section yield, and empiricism. The article details the fatigue crack growth behavior based on stress-corrosion cracking rates and corrosion fatigue factor. It summarizes the linear elastic fracture mechanics (LEFM) concepts for explaining the application of LEFM in damage tolerance analysis. The article exemplifies operating stress maps in a variety of applications.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006384
EISBN: 978-1-62708-192-4
... hundred micrometers, whereas pit depth is on the order of a few percent of pit diameter or less ( Ref 41 ). Although pitting is observed more on ductile metallic alloys that deform plastically under the action of bubble collapse, pits can also be formed in other materials such as polymers ( Ref 40...
Abstract
This article provides an overview of cavitation erosion with a specific focus on the estimation of mass loss. It describes the mechanisms of cavitation erosion and the types of laboratory devices to evaluate the resistance to cavitation erosion of materials. The laboratory devices include rotating disks, vibratory devices, cavitating liquid jets, and high-speed cavitation tunnels. The article discusses materials selection and surface protection to prevent cavitation erosion. It reviews the fluid-structure interaction that plays a role in cavitation erosion particularly for compliant materials. The article provides information on the numerical prediction of cavitation erosion damage by the finite element method (FEM).
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005512
EISBN: 978-1-62708-197-9
... in point-to-point contact ( Fig. 2 ). The asperities were thought to collapse by time-dependent plasticity (in this case, by superplastic flow) under plane-strain conditions. Fig. 2 Idealized geometry of Hamilton's model. (a) Plastic collapse of asperities. (b) Effective final thickness of bond zone...
Abstract
The goals of modeling diffusion bonding can be regarded as twofold: to optimize the selection of the process variables for a given material and to provide an understanding of the mechanisms by which bonding is achieved. This article describes the existing models of diffusion bonding with an assumption that the surfaces to be joined are free of contaminants and oxide, that bonding occurs between similar materials, and that the materials are single-phase metals. It discusses the mechanisms considered for diffusion bonding and limitations of existing models.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003295
EISBN: 978-1-62708-176-4
... tension and compression testing to shear stress and shear strain; however, this conversion seldom extends into a high strain range. The limit is frequently about 20% strain, which is far less than the strains reached in the aforementioned applications. At higher plastic strains, the deviation between...
Abstract
This article reviews the dynamic factors, experimental methods and setup, and result analysis of different types of high strain rate shear tests. These include high strain rate torsion testing, double-notch shear testing and punch loading, drop-weight compression shear testing, thick-walled cylinder testing, and pressure-shear plate impact testing.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
... Analysis Failure Mechanisms Cavitation erosion is material removal or plastic deformation of a solid surface in contact with a fluid subjected to cavity collapse. Shock wave and microjet result in a mechanical loading of the solid surface. In terms of contact mechanics, this type of loading could...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005606
EISBN: 978-1-62708-174-0
... and temperature to an interface for a prescribed period of time, is generally considered complete when cavities fully close at the faying surfaces. Relative agreement is found for the mechanisms and sequence of events that lead to the collapse of interface voids, and the following discussion describes...
Abstract
This article provides a qualitative summary of the theory of diffusion bonding, as distinguished from the mechanisms of other solid-state welding processes. Diffusion bonding can be achieved for materials with adherent surface oxides, but the resultant interface strengths of these materials are considerably less than that measured for the parent material. The article describes three stages of diffusion bonding: microasperity deformation, diffusion-controlled mass transport, and interface migration. It concludes with information on diffusion bonding with interface aids.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001350
EISBN: 978-1-62708-173-3
..., that is, the application of pressure and temperature to an interface for a prescribed period of time, is generally considered complete when cavities fully close at the faying surfaces. Relative agreement is found for the mechanisms and sequence of events that lead to the collapse of interface voids, and the discussion...
Abstract
Diffusion bonding is only one of many solid-state joining processes wherein joining is accomplished without the need for a liquid interface (brazing) or the creation of a cast product via melting and resolidification. This article offers a qualitative summary of the theory of diffusion bonding. It discusses factors that affect the relative difficulty of diffusion bonding oxide-bearing surfaces. These include surface roughness prior to welding, mechanical properties of the oxide, relative hardness of the metal and its oxide film, and prestraining or work hardening of the material. The article describes the mechanism of diffusion bonding in terms of microasperity deformation, diffusion-controlled mass transport, and interface migration. It concludes with a discussion on diffusion bonding with interface aids.
1