Skip Nav Destination
Close Modal
Search Results for
plaster casting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 132 Search Results for
plaster casting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2008
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005287
EISBN: 978-1-62708-187-0
..., shell mold casting, plaster casting, investment casting, permanent mold casting, squeeze casting, semisolid forming, centrifugal casting, and pressure die casting. The article presents several different factors on which the selection of a casting process depends. It discusses gating and risering...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article provides an overview of the common methods of aluminum shape casting. These include gravity casting, die casting, sand casting, lost foam casting, shell mold casting, plaster casting, investment casting, permanent mold casting, squeeze casting, semisolid forming, centrifugal casting, and pressure die casting. The article presents several different factors on which the selection of a casting process depends. It discusses gating and risering principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
...-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article discusses the designation and classification of aluminum casting alloys based on their composition and the factors influencing alloy selection. Alloys discussed include rotor alloys, commercial duralumin alloys, premium casting alloys, piston and elevated-temperature alloys, general-purpose alloys, magnesium alloys, aluminum-zinc-magnesium alloys, and bearing alloys. Six basic types of aluminum alloys developed for casting include aluminum-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, and investment casting. In addition, the article discusses factors affecting the mechanical and physical properties, microstructural features that affect mechanical properties, the effects of alloying, and major applications of aluminum casting alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003172
EISBN: 978-1-62708-199-3
... that use ceramic molds include investment casting, and plaster casting. Metallic molds are used in permanent mold casting, die casting, semisolid casting, and centrifugal casting. centrifugal casting ceramic molds CO2 process cold box process die casting hot box process investment casting lost...
Abstract
This article discusses classification of foundry processes based on the molding medium, such as sand molds, ceramic molds, and metallic molds. Sand molds can be briefly classified into two types: bonded sand molds, and unbonded sand molds. Bonded sand molds include green sand molds, dry sand molds, resin-bonded sand molds, and sodium silicate bonded sand. The article describes the casting processes that use these molds, including the no-bake process, cold box process, hot box process, the CO2 process, lost foam casting process and vacuum molding process. The casting processes that use ceramic molds include investment casting, and plaster casting. Metallic molds are used in permanent mold casting, die casting, semisolid casting, and centrifugal casting.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... Abstract Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot isostatic pressing.
Image
Published: 01 December 2008
Fig. 9 This aluminum plaster mold casting is an example where thin cores became excessively hot when surrounded by molten metal, causing shrinkage porosity.
More
Image
Published: 01 December 2008
Fig. 12 This 356 aluminum alloy casting, roduced in a centrifuged plaster-base investment mold, represents minimum wall thickness for the shape, alloy and process.
More
Image
Published: 01 December 2008
Fig. 17 Using a 4.8% Zn, 2.3% Mg aluminum alloy, this plaster mold casting distorted out of tolerance and was not producible to the original design. Using alloy 356, the casting was produced as designed, and distortion was within acceptable limits.
More
Image
Published: 30 November 2018
Fig. 6 This 356 aluminum alloy casting, produced in a centrifuged plaster-base investment mold, represents minimum wall thickness for the shape, alloy and process. Source: Ref 40
More
Image
in Aluminum Foundry Products
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 3 Tensile properties versus dendrite cell size for four heats of aluminum alloy A356-T62 plaster cast plates
More
Image
Published: 01 December 2008
Fig. 2 Tensile properties versus dendrite cell size for four heats of aluminum alloy A356-T62 plaster cast plates
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005249
EISBN: 978-1-62708-187-0
... Abstract This article discusses slurry molding that encompasses two distinct processes: plaster molding and ceramic molding. Plaster mold casting is a specialized casting process used to produce nonferrous castings that have greater dimensional accuracy, smoother surfaces, and more finely...
Abstract
This article discusses slurry molding that encompasses two distinct processes: plaster molding and ceramic molding. Plaster mold casting is a specialized casting process used to produce nonferrous castings that have greater dimensional accuracy, smoother surfaces, and more finely reproduced detail. The article describes three generally recognized plaster mold processes, namely, conventional plaster mold casting, the Antioch process, and the foamed plaster process. Ceramic molding techniques are based on processes that employ permanent patterns and fine-grained zircon and calcined, high-alumina mullite slurries for molding. The Shaw process and the proprietary Unicast processes are also discussed.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005307
EISBN: 978-1-62708-187-0
... alloys. It also reviews other casting processes for zinc alloys, such as sand casting, permanent mold casting, plaster mold casting, squeeze casting, and semisolid casting. alloy composition casting die casting furnaces hot chamber die casting inclusions permanent mold casting plaster mold...
Abstract
This article describes the control of alloy composition and impurity levels in die casting of zinc alloys based on agitation, use of foundry scrap, and melt temperature and fluxing. It reviews the process considerations for the melt processing of the zinc alloys. The process considerations include the usage of furnaces and launder system, scrap return, inclusions in zinc alloys, fluxing of zinc alloys, and galvanizing fluxes. The article discusses the materials and lubricant selection, casting and die temperature control, and trimming process used in hot chamber die casting for zinc alloys. It also reviews other casting processes for zinc alloys, such as sand casting, permanent mold casting, plaster mold casting, squeeze casting, and semisolid casting.
Image
Published: 01 December 2008
Fig. 3 An aluminum elbow (alloy 356) cast by the plaster mold process to three different thicknesses to determine the effect of wall thickness. Rejections were 80% with 0.040-in. wall, 35% with 0.060-in., and 10% with 0.080-in.
More
Image
Published: 01 December 2008
Fig. 5 Typical setup for vacuum-assist pouring of a conventional plaster mold casting. (a) Side view of conventional plaster mold positioned between upper and lower plates for pouring with vacuum assist. (b) Details of a top plate (A) seen from the bottom showing vacuum channels
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid...
Abstract
Aluminum casting alloys are among the most versatile of all common foundry alloys and generally have high castability ratings. This article provides an overview of the common methods of aluminum shape casting. It discusses the designations of aluminum casting alloys categorized by the Aluminum Association designation system. The article summarizes the basic composition groupings of aluminum casting alloy and discusses the effects of specific alloying elements and impurities. The characteristics of the important casting processes are summarized and compared in a table. The article presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid casting, is also included.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005187
EISBN: 978-1-62708-187-0
... Abstract This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods...
Abstract
This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods, such as die casting, squeeze casting, and semisolid processing. The article contains tables that compare some of the typical capabilities of shape casting processes.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005241
EISBN: 978-1-62708-187-0
... resins; shell molding of sand with a thin resin-bonded shell; no-bond vacuum molding of sand; plaster-mold casting; ceramic-mold casting; rammed graphite molding; and magnetic (no-bond) molding of ferrous shot. The article tabulates a general comparison of casting methods and discusses the basic...
Abstract
Casting can be done with either expendable molds for one-time use or permanent molds for reuse many times. This article lists the various methods used to fabricate expendable molds from permanent patterns. The methods include molding of sand with clay, inorganic binders, or organic resins; shell molding of sand with a thin resin-bonded shell; no-bond vacuum molding of sand; plaster-mold casting; ceramic-mold casting; rammed graphite molding; and magnetic (no-bond) molding of ferrous shot. The article tabulates a general comparison of casting methods and discusses the basic requirements of foundry molds.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009019
EISBN: 978-1-62708-187-0
... Abstract Cores are separate shapes, of sand, metal, or plaster, that are placed in the mold to provide castings with contours, cavities, and passages. Cored holes should be designed simply as the intended function of the casting permits. This article describes the designing of casting...
Abstract
Cores are separate shapes, of sand, metal, or plaster, that are placed in the mold to provide castings with contours, cavities, and passages. Cored holes should be designed simply as the intended function of the casting permits. This article describes the designing of casting for the use of sand cores and to eliminate cores, with illustrations. It provides general rules for designing cored holes in investment castings. The article discusses the general principles of coremaking with illustrations. It concludes with a comparison between coring and drilling.
Image
Published: 01 December 2008
Fig. 17 Coring limitations of permanent mold castings are illustrated by this simple casting. (a) The corner radius of the cored passage must be sacrificed if metal cores are to be used to achieve production at the most economical level. (b) Plaster or sand cores can provide the inside radius
More
1