Skip Nav Destination
Close Modal
Search Results for
plasma control console
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 20 Search Results for
plasma control console
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005582
EISBN: 978-1-62708-174-0
..., current and operating modes, advantages, disadvantages, and applications of PAW. It discusses the personnel and equipment requirements, as well as the joints used in the process. The power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases...
Abstract
Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article focuses on the operating principles and procedures, current and operating modes, advantages, disadvantages, and applications of PAW. It discusses the personnel and equipment requirements, as well as the joints used in the process. The power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases are also reviewed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001357
EISBN: 978-1-62708-173-3
... of the PAW process, as well as the advantages and disadvantages. It describes the components of a basic PAW system, namely the power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases. The article provides information on the applications...
Abstract
Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article discusses the melt-in mode and the keyhole mode of the PAW process, as well as the advantages and disadvantages. It describes the components of a basic PAW system, namely the power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases. The article provides information on the applications of the PAW process and discusses the typical components and joints used. It concludes with information on personnel requirements and safety issues.
Image
Published: 01 January 2006
Fig. 8 Gantry shape-cutting system. (a) Computer numerical controlled (CNC) cutting tool incorporating oxyfuel torches, plasma arc torches, 90° indexing triple-torch oxyfuel stations for straight-line beveling, and zinc powder or punch markers. (b) Closeup of CNC control console. Courtesy
More
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005713
EISBN: 978-1-62708-171-9
... cannot be described in this very brief history of only the major initiating inventions/developments. Many thermal spray advances now focus on improved process control including computer-controlled consoles, robotics, real-time sensors, and automated handling systems. Figure 1 roughly summarizes some...
Abstract
Significant expansion of thermal spray technology occurred with the invention of plasma spray, detonation gun, and high-velocity oxyfuel (HVOF) deposition technologies. This article provides a brief history of the major initiating inventions/developments of thermal spray processes. It provides information on feedstock materials developed for specific thermal spray processes.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005718
EISBN: 978-1-62708-171-9
.... The article summarizes the essential equipment components and necessary controls. The various thermal spray processes are conventional flame spray, detonation gun, high-velocity oxyfuel spray, electric arc spray, and plasma arc spray. Other processes, such as cold spray, underwater plasma arc spray...
Abstract
This article presents the major thermal spray processes and their subsets, presenting each of the commercially significant processes together with some of their important variations. Each process is presented along with the attributes that influence coating structure and performance. The article summarizes the essential equipment components and necessary controls. The various thermal spray processes are conventional flame spray, detonation gun, high-velocity oxyfuel spray, electric arc spray, and plasma arc spray. Other processes, such as cold spray, underwater plasma arc spray, and extended-arc and other high-energy plasma arc spray, are also considered.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005719
EISBN: 978-1-62708-171-9
... for flame spray but is not recommended for plasma, because the powder ports of plasma spray guns are at the anode potential. Using a powder hose with too high a conductivity can direct the high-frequency starting pulse back into the powder feeder and control console, resulting in damage. Static dissipative...
Abstract
This article discusses various control processes carried out in powder feeding, thermal spraying, and gas flow of the thermal spray process to standardize the coating quality. Quality of the entire powder feeding process can be achieved by controlling the processing of feeding equipment as well as the characteristics of the powder being fed. Gas flow control can be achieved by using rotameters, critical orifices, and thermal mass flowmeters, whose ability to provide useful information is defined by their resolution, accuracy, linearity, and repeatability. The commercial thermal spray controls discussed here include the open-loop input-based, open-loop output-based, closed-loop input-based, and closed-loop output-based or adaptive controls. The article discusses the common causes and practical solutions for arc starting problems. It also outlines certain important developments in measuring individual and collective particle velocities, temperature, and trajectories as well as other plume characteristics for the plasma spray process.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005717
EISBN: 978-1-62708-171-9
... to protect the operator from direct, line-of-sight viewing of the arc. Both plasma and electric arcs can pose a hazard from light reflected from parts, the powder stream, water curtains, booth walls, control consoles, and tooling. Plasma and electric arc spray generate the largest amounts of UV and IR...
Abstract
The hazards associated with thermal spray deposition processes include ultraviolet and infrared radiation; acoustical noise; and by-product production in the forms of nitrous oxides, ozone, fumes, and dust. The most important consideration in health and safety is to use the engineered controls of hazards. This article provides a brief description of the spray booth, the most commonly used engineering tool to separate the operator from the thermal spray process and confine the associated hazards. It also presents guidelines on the proper and safe handling of industrial gases and ventilation and heat exhaust. The article provides information on the personal protective equipment for eyes and skin from radiation, and ears from noise. It also discusses other potential safety hazards associated with thermal spraying, namely, magnetic fields and infrasound.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005791
EISBN: 978-1-62708-165-8
... methods of steel. These methods include direct-current plasma nitriding, pulsed-current plasma nitriding, and active-screen plasma nitriding. The article reviews cold-walled and hot-walled furnaces used for plasma nitriding. It provides information on the importance of controlling three process parameters...
Abstract
Plasma (ion) nitriding is a method of surface hardening using glow-discharge technology to introduce nascent (elemental) nitrogen to the surface of a metal part for subsequent diffusion into the material. This article describes the procedures and applications of plasma nitriding methods of steel. These methods include direct-current plasma nitriding, pulsed-current plasma nitriding, and active-screen plasma nitriding. The article reviews cold-walled and hot-walled furnaces used for plasma nitriding. It provides information on the importance of controlling three process parameters: atmosphere, pressure, and part temperature. The article includes a discussion on the influence of nitrogen concentration on case structure formation on nitrided steel, and explains the significance of microstructure, hardness, and fatigue strength on nitrided case. It also discusses processing, laboratory studies, and applications of nitrocarburizing of steel.
Book Chapter
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005759
EISBN: 978-1-62708-171-9
... console and depressing a teach pendant enabling device. It is recommended that the control system require the operator's presence inside the booth but outside the restricted space, in case any sudden, unexpected movement of the robot occurs. This can be accomplished by using a presence-sensing switch...
Abstract
This article discusses the safety issues associated with the design and operation of thermal spray booths and spray box structures and the equipment or systems required for operating thermal spray processes. It describes the design elements necessary to mitigate sound, dust and fume, ultraviolet light, and mechanical hazards. The means selected for safeguarding personnel must be based on a formal risk assessment that meets ANSI/RIA standards. The safeguards include sensing devices, barriers, awareness signals, procedures, and training. It also provides guidelines that are intended to increase the safety awareness and the use of safety practices for gas and liquid piping and electrical equipment within thermal spray installations.
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003054
EISBN: 978-1-62708-200-6
... no reactions during heating. As the sample and standard are heated at a controlled linear rate, reactions occurring in the sample are recorded as peaks (indicating exothermic reactions) or valleys (indicating endothermic reactions). The same reactions that result in a weight loss for TGA monitoring have...
Abstract
Sintering provides the interparticle bonding that generates the attractive forces needed to hold together the otherwise loose ceramic powder mass. It also improves hardness, strength, transparency, toughness, electrical conductivity, thermal expansion, magnetic saturation, corrosion resistance, and other properties. This article discusses the fundamentals of sintering and its effects on pore structures and particle density. It addresses some of the more common sintering methods, including solid-state, liquid-phase, and gas pressure sintering, and presents alternative processes such as reaction sintering and self-propagating, high-temperature synthesis. It also describes several pressure densification methods, including hot isostatic pressing, gas pressure sintering, molten particle deposition, and sol-gel processing. The article concludes with a section on grain growth that discusses the underlying mechanisms and kinetics and the relationship between grain growth and densification.
Book Chapter
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005748
EISBN: 978-1-62708-171-9
... to approximate, in a short time, sion when that material is stressed. abradable coating. The sacri cial member of a the deteriorating effect under normal long- two-component clearance-control (gas path term service conditions. acrylics. A broad array of polymers and copo- seal) system, usually applied...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.9781627081658
EISBN: 978-1-62708-165-8
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... by the electron gun and focused and controlled by a series of electromagnetic lenses and coils. The resultant beam is collimated and defined by various apertures placed in the beam path. Fig. 1 Schematic showing the general layout of a typical scanning electron microscope The electron gun consists...
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... A schematic of a typical thermionic SEM column is shown in Fig. 1 . Electrons are generated by the electron gun, then are focused and controlled by a series of electromagnetic lenses and coils. The resultant beam is collimated and defined by various apertures placed in the beam path. Fig. 1 Schematic...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005175
EISBN: 978-1-62708-186-3
... Abstract Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article discusses the operation principles and process capabilities of the OFC. It reviews the properties...
Abstract
Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article discusses the operation principles and process capabilities of the OFC. It reviews the properties and compositions of fuel types such as acetylene, natural gas, propane, propylene, and methyl-acetylene-propadiene-stabilized gas. The article describes the effects of OFC on base metal, including carbon and low-alloy steels, cast irons, and stainless steels. It provides information on light cutting, medium cutting, heavy cutting, and stack cutting. The article informs that the basic oxyfuel method can be modified to allow gas cutting of metals, such as stainless steel and most nonferrous alloys, that resist continuous oxidation.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.9781627081993
EISBN: 978-1-62708-199-3
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003047
EISBN: 978-1-62708-200-6
... are sometimes required for setting adhesive Limitation on upper service temperature is usually 175 °C (350 °F), but materials are available for limited use to 370 °C (700 °F) Heat and pressure may be required for assembly Jigs and fixtures may be required for assembly Rigid process control...
Abstract
This article begins with an overview of the fundamentals of adhesive technology, including functions, limitations, adhesive joint types, and the key factors in the selection of adhesives, including application, type of joint, process limitation, mechanical requirement, and service conditions. It then focuses on the characteristics, types, and properties of the five groups of adhesives, such as structural, hot melt, pressure sensitive, water based, ultraviolet, and electron beam cured adhesives. The article also discusses the functions and applications of adhesive modifiers, including fillers, adhesion promoters, tackifiers, and tougheners. It gives a short note on functions of primers and primerless bonding. Applications of adhesives in automotive, aerospace, electronics, electrical, medical, sports, and construction sectors are also described. Finally, the article describes the steps in adhesive bonding, including storage and handling of adhesives, bonding preparation, adhesive application, tooling, and curing.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... part failure Causes Type of failure Numbers Low water cut-off Faulty design fabrication or installation Corrosion or erosion Operator error or poor maintenance Burner failure Pressure control failure Other Burned or overheated Collapsed inward Combination...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.