1-20 of 626 Search Results for

plane-strain tension test

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2000
Fig. 16 Plane strain tension test specimen, showing the strains and stresses in the gage section More
Image
Published: 01 January 2000
Fig. 5 Schematic of a plane-strain tension test specimen. Source: Ref 1 More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003258
EISBN: 978-1-62708-176-4
... testing methods, including the tension test, plane-strain tension test, compression test, plane-strain compression test, partial-width indentation test, and torsion test. Aspects of testing particularly relevant to workability and quality control for metalworking processes are also described. Finally...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005149
EISBN: 978-1-62708-186-3
... of measuring deformation. It reviews the effect of materials properties and temperature on formability. The article provides a detailed discussion on the two major categories of formability tests such as the intrinsic test, including uniaxial tension testing, plane-strain tension testing, biaxial stretch...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis. bend test bulk forming processes cracking...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
..., compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005508
EISBN: 978-1-62708-197-9
... Abstract This article describes the most commonly used test methods for determining flow stress in metal-forming processes. The methods include tension, ring, uniform compression, plane-strain compression, torsion, split-Hopkinson bar, and indentation tests. The article discusses the effect...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005181
EISBN: 978-1-62708-186-3
... testing plane-stress deformation strain rate tension testing torsion testing Effective stress, strain, and strain rate (isotropic material) in arbitrary coordinates Table 1 Effective stress, strain, and strain rate (isotropic material) in arbitrary coordinates Variable or quantity Symbol...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003443
EISBN: 978-1-62708-195-5
... by Shear Loading D 3479 Standard Test Method for Tension-Tension Fatigue of Polymer-Matrix Composite Materials D 3518/D 3518M Standard Practice for In-Plane Shear Response of Polymer-Matrix Composite Materials by Tensile Test of a ±45° Laminate D 3846 Test Method for In-Plane Shear Strength...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009009
EISBN: 978-1-62708-185-6
... Abstract This article describes the use of compression tests, namely, cylindrical compression, ring compression, and plane-strain compression tests at elevated temperatures. It discusses the effects of the temperature, strain rate, and deformation heating on metals during the cylindrical...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004030
EISBN: 978-1-62708-185-6
... Abstract This article contains nine tables that present useful formulas for deformation analysis and workability testing. The tables present formulas for effective stress, strain, and strain rate in arbitrary coordinates, principal, compression and tension testing of isotropic material...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003330
EISBN: 978-1-62708-176-4
... energy release rate strain rate tension testing open hole tension test THE CHARACTERIZATION of engineering properties is a complex issue for fiber-reinforced composites (FRC) due to their inherent anisotropy and inhomogeneity. In terms of mechanical properties, advanced composite materials...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003379
EISBN: 978-1-62708-195-5
... sloping lines in the glass-fiber reference plane would be almost vertical at the lamina level. Fig. 6 Fiber failure envelopes at the constituent and lamina strain levels for carbon fibers in a polymer. Circles indicate lamina test data points. Fig. 7 Fiber failure envelopes at the lamina...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005542
EISBN: 978-1-62708-197-9
... ) 100 A 0 True fracture strain (ε f ) ε f = ln [ A 0 A f ] = 2 ln [ d 0 d f ] Necking during tension testing of round-bar samples Sample radius at symmetry plane of neck a Profile radius of neck R Bridgman...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003444
EISBN: 978-1-62708-195-5
... by Shear Loading In-plane compression D 3479/D 3479M Tension-Tension Fatigue of Polymer Matrix Composite Materials Tension-tension fatigue D 4255 Testing Inplane Shear Properties of Composite Laminates In-plane shear D 5379/D 5379M Shear Properties of Composite Materials by the V-Notched...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... without fracture. The conventional measures of ductility that are obtained from the tension test are the engineering strain to fracture and the reduction of area at fracture. The percentage elongation, % e , is the elongation between the gage marks of the specimen divided by the original gage length...
Image
Published: 01 January 1987
Fig. 1005 Fracture surface of a fracture-toughness test specimen of aluminum alloy 7075-T6, showing the zone of transition from the fatigue-precrack region (below arrows) to the tension-overload plane-strain fracture region (above arrows). Specimen was aged 24 h at 120 °C (250 °F); tensile More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003269
EISBN: 978-1-62708-176-4
... by analytical methods or by test methods. For materials with a generally isotropic structure, mechanical properties from uniaxial tension and compression testing can be converted to shear stress and shear strain, when strain conditions are below about 20%. For the evaluation of design strength of components...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005131
EISBN: 978-1-62708-186-3
... modulus is 1.12 times the plane-stress (i.e., uniaxial tension) one. Thus, the differences between Eq 4 interpreted for plane stress or plane strain is only approximately 1.15 versus 1.12, or approximately a 3% differential. Elastic and plastic anisotropy may change this value. Moments of inertia...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003257
EISBN: 978-1-62708-176-4
... test described in detail in the article “Uniaxial Tension Testing” in this Volume. The elastic modulus E is determined from the slope of the elastic part of the tensile stress strain curve, and the failure stress, σ f , is determined from the tensile yield strength, σ o , or the ultimate tensile...