Skip Nav Destination
Close Modal
Search Results for
pitch-based carbon fibers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 157 Search Results for
pitch-based carbon fibers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0009241
EISBN: 978-1-62708-195-5
... Abstract The earliest commercial use of carbon fibers is often attributed to Thomas Edison's carbonization of cotton and bamboo fibers for incandescent lamp filaments. This article describes the manufacture of PAN-based carbon fibers and pitch-based carbon fibers. It discusses the properties...
Abstract
The earliest commercial use of carbon fibers is often attributed to Thomas Edison's carbonization of cotton and bamboo fibers for incandescent lamp filaments. This article describes the manufacture of PAN-based carbon fibers and pitch-based carbon fibers. It discusses the properties and characteristics of carbon fibers in terms of axial structure, transverse structure, and interfacial bonding. The article discusses the typical applications of carbon fibers, including aerospace and sporting goods. It concludes with a discussion on anticipated developments in carbon fibers.
Image
Published: 01 January 2001
Fig. 4 The modulus of a carbon fiber is determined by the preferred orientation, microstructure, and elastic constants. The relationship between modulus and preferred orientation for a pitch-based carbon fiber is shown.
More
Image
Published: 01 November 1995
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003064
EISBN: 978-1-62708-200-6
... concentrators and, hence, reduce tensile strength. Pitch Precursors Pitch precursors based on petroleum asphalt, coal tar, and polyvinyl chloride can also be used to produce carbon fiber. Pitches are relatively low in cost and high in carbon yield. Their most significant drawback is nonuniformity from...
Abstract
Carbon-carbon composites (CCCs) are introduced in fields that require their high specific strength and stiffness, in combination with their thermoshock resistance, chemical resistance, and fracture toughness, especially at high temperatures. The use of CCCs has expanded as the price of carbon fibers has dropped and their mechanical properties have increased. This article begins with an overview of the carbon conversion processes, fiber properties and microstructures, and interfacial bonding and environmental interaction of carbon fibers, followed by a detailed discussion on the various techniques available for processing CCCs for specific applications, including preform fabrication (fiber weaving), densification, application of protective coatings, and joining. The article closes with a description of the mechanical and physical properties and applications of CCCs. The main applications of CCCs, in terms of money and mass, are in the military, space, and aircraft industries.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006897
EISBN: 978-1-62708-392-8
.... Properties of polyacrylonitrile (PAN) and pitch-based carbon fibers are shown in Table 2 . Carbon fibers are approximately 5 to 10 mm (0.2 to 0.4 in.) in diameter and are usually composed of carbon atoms. Carbon fibers have several benefits, including excessive stiffness, high tensile energy, low weight...
Abstract
An ankle-foot orthosis (AFO) is a support designed to regulate the ankle's position and mobility, compensate for weakness, or rectify abnormalities. This article focuses on the biomechanical affects and mechanical properties of custom-made 3D-printed AFOs and compares them to traditionally created AFOs. Investigations in the fields of 3D scanning, 3D printing, and computer-aided design and analysis for the production of custom-made AFOs are also covered.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003480
EISBN: 978-1-62708-195-5
... for obtaining high thermal conductivity are pitch-based carbon (also called graphite) fibers, which are used in continuous and discontinuous forms, and two types of ceramic particles, silicon carbide (SiC) and beryllia (beryllium oxide, BeO). As a rule, continuous fibers are much more efficient than...
Abstract
This article presents an overview of advanced composites, namely, polymer matrix composites, metal-matrix composites, ceramic-matrix composites, and carbon-matrix composites. It also provides information on the properties and applications of the composites in thermal management and electronic packaging.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003422
EISBN: 978-1-62708-195-5
... Precursor Impregnants The two general categories of matrix precursors used for carbon-carbon densification are thermosetting resins, such as phenolics and furfurals, and pitches based on coal tar and petroleum. The thermosetting resins polymerize to form cross- linked, infusible solids. As a result...
Abstract
This article describes the manufacture, post-processing, fabrication, and properties of carbon-carbon composites (CCCs). Manufacturing techniques with respect to the processibility of different geometries of two-directional and multiaxial carbon fibers are listed in a table. The article discusses matrix precursor impregnants, liquid impregnation, and chemical vapor infiltration (CVI) for densification of CCCs. It presents various coating approaches for protecting CCCs, including pack cementation, chemical vapor deposition, and slurry coating. Practical limitations of coatings are also discussed. The article concludes with information on the mechanical properties of CCCs.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003359
EISBN: 978-1-62708-195-5
... loss of fiber properties. More expansive coverage of these fibers is provided in the article “Ceramic Fibers” in this Volume. Carbon Fibers Two classes of carbon fiber, polyacrylonitrile (PAN) and pitch-based fibers, derive quite different structures and properties: the PAN being higher...
Abstract
For the reinforcement of metal-matrix composites, four general classes of materials are commercially available: oxide fibers based primarily on alumina and alumina silica systems, nonoxide systems based on silicon carbide, boron fibers, and carbon fibers. This article discusses the key aspects of aluminum oxide fibers, silicon carbide fibers, boron fibers, and carbon fibers. The commercial fibers for reinforcement of metal-matrix composites are presented in a table. A tabulation of the coating schemes for silicon carbide monofilament fibers is also provided.
Image
in Metal-Matrix Composites
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 5 Carbon fiber axial modulus versus axial coefficient of thermal expansion for mesophase (pitch-base) and polyacrylonitride-base (pan-base) graphite fibers. Source: Ref 18
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003033
EISBN: 978-1-62708-200-6
... precursors to carbon fiber. Carbon fiber based on a PAN precursor generally has a higher tensile strength than a fiber based on any other precursor. This is due to a lack of surface defects, which act as stress concentrators and therefore reduce tensile strength. Pitch Precursors Pitch precursors...
Abstract
This article addresses the types, properties, forms, and applications of fibers that are available for use in fiber-reinforced polymeric matrix composites, including glass, graphite, carbon, aramid, boron, silicon carbide, ceramic, continuous oxide and discontinuous oxide fibers. It describes the functions, types, and chemical composition of fiber sizing agents. The article discusses the styles, properties, applications, and weaving methods of unidirectional, two-directional and multidirectionally reinforced fabrics. The article also reviews the use of prepreg resins in aerospace and lower performance applications.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002465
EISBN: 978-1-62708-194-8
... mandrels Three-dimensional woven/filament wound carbon/carbon (also braided) Phenolic, pitch, and furan resins convertible with inert atmosphere heat to densified carbon char Carbon (rayon, pan, pitch base), graphite fiber prior processed to 1650–2760 °C (3000–5000 °F) for fiber weaving dry...
Abstract
This article describes the interaction of composition, manufacturing process, and composite properties of composites. The manufacturing process includes resin-matrix, metal-matrix, and carbon/carbon matrix processing. The article discusses various mechanical properties of composites. It explores how variations in the composition, manufacturing, shop process instructions, and loading/environmental conditions can affect the use of a composite product in a performance/service life operation.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003373
EISBN: 978-1-62708-195-5
.... Their thermoplastic behavior requires that they either be confined within the object by external means, or be chemically treated (stabilized) prior to heating to carbonization temperatures. Petroleum- or coal-based pitch materials are a good example of this type. Most pitches are solids at room temperature. They can...
Abstract
This article describes the various pure forms of carbon matrices and the corresponding methods used to create them or incorporate them into a matrix of a composite. These forms include graphite, diamond, fullerenes, and nanotubes. The article discusses the three types of liquid precursors, namely, thermoplastic, thermosetting, and evaporative or solvent carriers. It provides a description of the advantages and limitations of various methods involved in chemical vapor infiltration. The article concludes with a discussion on matrix contribution to composite properties.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001318
EISBN: 978-1-62708-170-2
... the 1980s, a significant level of research activity focused on the protection of high-performance carbon-carbon that used heat-stabilized polyacrylonitrile (PAN) or pitch-based fibers. These composites have higher strength, higher elastic moduli, and lower thermal expansion coefficients than the rayon-based...
Abstract
Carbon-carbon is a unique composite material in which a nonstructural carbonaceous matrix is reinforced by carbon fibers to create a heat-resistant structural material that finds application in the aerospace and defense industries. This article provides a detailed account of the fundamentals of protecting carbon-carbon composites and explains the various coating deposition techniques, namely, pack cementation, chemical vapor deposition, and slurry coatings. It includes information on the practical limitations of coatings for the carbon-carbon composites.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... for the production of low-cost, high-performance carbon fibers was the use of either petroleum- or coal-based pitch as an inexpensive precursor. Pitch-based fibers having elastic moduli of up to 830 GPa (120 × 10 6 psi) are commercially available and are being used in several specialized applications. However...
Abstract
This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials for commercial applications, epoxy resins, bismaleimide resins, polyimide resins, and thermoplastic resins are used for aerospace applications. The article addresses design considerations as well as product forms and fabrication processes.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003398
EISBN: 978-1-62708-195-5
... Conductivity Pitch-based carbon fibers offer considerably higher thermal conductivity ( K L ) than metals and have a much lower density. This comparison is shown in Table 10 . The main use of these fibers is in space applications and thermal cores for electronic modules. The in-plane thermal...
Abstract
This article presents the basic guidelines considered in designing a composite structure, and the basic definitions of terms that apply to composites. It describes the analysis of a composite laminate based on stress-strain relationships, stress-strain load relationships, general load displacement case, and general load case solution. Factors affecting the composite materials properties and allowables of fiber-reinforced polymers are reviewed. The article discusses the process considerations for mold design, such as master model, metal tooling, composite tooling, and tool care. It explains the resin selection in designing the composite for use in a particular application. The article illustrates the various methods that are used to process a composite component, namely, wet lay-up, autoclave, resin transfer molding, and vacuum-assisted resin transfer molding. It provides a discussion on electromagnetic interference shielding, electrostatic discharge protection, metal plating, fire resistance, and corrosion resistance on composite materials.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001101
EISBN: 978-1-62708-162-7
..., secondary processing such as diffusion bonding or pultrusion is needed to make structural elements. Squeeze casting also is feasible for the fabrication of this composite ( Ref 23 ). Fig. 5 Carbon fiber axial modulus versus axial coefficient of thermal expansion for mesophase (pitch-base...
Abstract
Metal-matrix composites (MMCs) are a class of materials with potential for a wide variety of structural and thermal management applications. They are nonflammable, do not outgas in a vacuum, and suffer minimal attack by organic fluids, such as fuels and solvents. This article presents an overview of the status of MMCs, and provides information on physical and mechanical properties, processing methods, distinctive features, and various types of continuously and discontinuously reinforced aluminum, magnesium, titanium, copper, superalloy, and intermetallic-matrix composites. It further discusses the property prediction and processing methods for MMCs.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
... to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes...
Abstract
Of the many different nondestructive evaluation (NDE) techniques, ultrasonic inspection continues to be the leading nondestructive method for inspecting composite materials, because measurements can be quantitative and the typical defect geometries and orientations lend themselves to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes the linear and phased array systems that are sometimes used for large-scale inspection tasks to reduce scan times, the various gating and image processing techniques, and how ultrasonic data are interpreted and presented. A brief section on future trends in ultrasonic inspection is presented at the end of the article.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003032
EISBN: 978-1-62708-200-6
... reinforcement materials include the base fiber, which is a special variation of high-tenacity rayon tire cord reinforcement, pitch fibers, and polyacrylonitrile fibers. The base fiber is woven into plain, leno, and satin weaves and subsequently carbonized at below 1650 °C (3000 °F). Polyacrylonitrile fibers...
Abstract
The design and analysis of aerospace and industrial composite components and assemblies requires a detailed knowledge of materials properties, which, in turn, depend on the manufacturing, machining, and assembly methods used. This article, through several tables and graphs, provides the mechanical properties, physical properties, and service characteristics of representative composite fiber-resin combinations, including thermoplastic matrix composites such as thermoplastic polyester resins, thermoplastic polyamide resins, and thermoplastic polysulfone resins, and thermoset matrix composites such as thermoset polyester resins, thermoset phenolic resins, thermoset epoxy resins, thermoset polyimide resins, and thermoset bismaleimide resins.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003449
EISBN: 978-1-62708-195-5
... in a significant cost savings. The fiber reinforcement within a CFCC is typically either SiC or carbon, although a number of other oxide and nonoxide fibers are currently under development and several are commercially available. The properties of several ceramic- and carbon-base fibers can be found in Tables...
Abstract
This article discusses the mechanisms for enhancing the reliability of three types of ceramic-matrix composites: discontinuously reinforced ceramic-matrix composites, continuous fiber ceramic composites, and carbon-carbon composites. It also presents examples of their mechanical and physical properties. Examples that illustrate the properties of commercially available materials are also provided.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003039
EISBN: 978-1-62708-200-6
...-modulus fibers and higher energy costs, and because large-scale production economies have not yet been imposed. All fibers, except ultrahigh-modulus pitch and extremely high-modulus pitch, have been successfully filament wound. Carbon and graphite fibers (in order of ascending modulus of strand...
Abstract
Filament winding is a process that allows the precise lay-down of continuous reinforcement in predescribed patterns at a high rate of speed. This article discusses the filament winding process and includes a comparison to other compacting and curing processes. The article describes design factors, and techniques to produce aerodynamic surfaces, improve surface smoothness, and avoid slipping and bridging of filament. The article discusses tooling and the equipment used in the filament winding process, namely, mandrel design, winding machines, tensioners, and ovens.
1