Skip Nav Destination
Close Modal
Search Results for
pit stifling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 23
Search Results for pit stifling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003612
EISBN: 978-1-62708-182-5
..., the article provides a detailed discussion on the various stages of pitting. These include passive film breakdown, metastable pitting, pit growth, and pit stifling or death. pitting corrosion passive metals metal composition surface condition alloy composition corrosion inhibitors pitting passive...
Abstract
This article focuses on the different parameters that influence the pitting corrosion of passive metals. The parameters are environment, metal composition, potential, temperature, surface condition, alloy composition, stochastic nature of the processes, and inhibitors. In addition, the article provides a detailed discussion on the various stages of pitting. These include passive film breakdown, metastable pitting, pit growth, and pit stifling or death.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003613
EISBN: 978-1-62708-182-5
... stifling, and pitting relationships. It explains the crevice corrosion of stainless steel, nickel alloys, aluminum alloys, and titanium alloys with examples. The article reviews the types of testing methods that have been developed for differentiating and ranking the resistance of alloys toward crevice...
Abstract
Crevice corrosion involves three fundamental types of processes such as electrochemical reactions, homogeneous chemical reactions, and mass transport. This article describes the critical factors of crevice corrosion, including crevice geometry, material, environment, crevice corrosion stifling, and pitting relationships. It explains the crevice corrosion of stainless steel, nickel alloys, aluminum alloys, and titanium alloys with examples. The article reviews the types of testing methods that have been developed for differentiating and ranking the resistance of alloys toward crevice corrosion. It also presents the strategies for the prevention of crevice corrosion or lessening its effects, such as design awareness, use of inhibitors, and electrochemical control methods.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003661
EISBN: 978-1-62708-182-5
..., for example, due to the influence of oxidizing species such as O 2 , Fe 3+ , OCl − , and so on. At potentials more active or electronegative than the repassivation (protection) potential, pit initiation and growth are stifled. It should be noted that breakdown potential, repassivation potential...
Abstract
Pitting is a form of localized corrosion that is often a concern in applications involving passivating metals and alloys in aggressive environments. This article describes the test methods for pitting corrosion. These methods include ASTM G 48, ASTM F 746, ASTM G 61, ASTM G 100, and electrochemical noise measurements. The visual examination, metallographic examination, and nondestructive inspection of pits are discussed. The article reviews the procedures for the use of standard charts, metal penetration, statistical analysis, and loss in mechanical properties to quantify the severity of pitting damage.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003105
EISBN: 978-1-62708-199-3
... from the surface as they form, which reduces their effectiveness in stifling further corrosion. Pitting Where pitting is a serious consideration, steels containing up to 3% Ni or 3% Cr may be used. Both nickel steels and chromium steels pit at about half the rate of carbon steel. For instance...
Abstract
Corrosion of metals is defined as deterioration caused by chemical or electrochemical reaction of the metal with its environment. This article provides information on corrosion of iron and steel by aqueous and nonaqueous media. It discusses the corrosive environments of carbon and alloy steels, namely atmospheric corrosion, soil corrosion, corrosion in fresh water and seawater. The article describes the corrosion process in concrete, which tends to create conditions that increase the rate of attack. The focus is on the stress-corrosion cracking of steels; an environmentally induced crack propagation that results from the combined interaction of mechanical stress and corrosion reactions. The article tabulates a guide on corrosion prevention for carbon steels in various environments. It also discusses protection methods of steel from corrosion, including coatings, such as temporary protection, cleaning, hot dip coating, electroplating, thermal spray coatings, conversion coatings, thin organic coatings, and inhibitors.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... intergranular pitting of 304L stainless steel condenser tubes in a geothermal electrical power plant operating at >100 °C (> 210 °F) has been reported ( Ref 16 ). In another example, microbiological activity and chloride concentrated under scale deposits were blamed for the wormhole pitting of carbon...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003647
EISBN: 978-1-62708-182-5
... to significant reductions in corrosion rate ( Ref 1 ). Pitting, crevice corrosion, differential aeration cells, metal concentration cells, selective dealloying, enhanced erosion, and enhanced galvanic corrosion can result from MIC. Most MIC studies have focused on bacterial involvement; however, other single...
Abstract
Corrosion resulting from the presence and activities of microbes on metals and metal alloys is generally referred to as microbiologically influenced corrosion (MIC). This article describes the biofilm formation and structure and microbial processes influencing corrosion. It also discusses the electrochemical techniques used to study and monitor MIC and presents examples of their applications to MIC.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003836
EISBN: 978-1-62708-183-2
... protective passive oxide films ( Ref 47 ). Such behavior was not observed in the as-quenched version of the same amorphous alloy, which resisted depassivation and porosity development in the same solution. However, global electrochemical properties, such as resistance to micrometer-sized pit formation...
Abstract
This article illustrates the three techniques for producing glassy metals, namely, liquid phase quenching, atomic or molecular deposition, and external action technique. Devitrification of an amorphous alloy can proceed by several routes, including primary crystallization, eutectoid crystallization, and polymorphous crystallization. The article demonstrates a free-energy versus composition diagram that summarizes many of the devitrification routes. It provides a historical review of the corrosion behavior of fully amorphous and partially devitrified metallic glasses. The article describes the general corrosion behavior and localized corrosion behavior of transition metal-metal binary alloys, transition metal-metalloid alloys, and amorphous simple metal-transition metal-rare earth metal alloys. It concludes with a discussion on the environmentally induced fracture of glassy alloys, including hydrogen embrittlement and stress-corrosion cracking.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
..., and their alloys, are susceptible to damage ( Ref 4 ). Titanium and its alloys appear to be generally resistant ( Ref 5 – 8 ), although modest pitting due to MIC has been demonstrated in the laboratory ( Ref 9 ). Viable microorganisms can be found over a wide range of temperature, pressure, salinity, and pH...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... barrier that is stable over a considerable range of oxidizing power and is eventually destroyed in strong oxidizing solutions. Under conditions in which the surface film is stable, the anodic reaction is stifled and the metal surface is protected from corrosion. For example, stainless steel owes its...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003654
EISBN: 978-1-62708-182-5
... direction indicates a stifling of corrosion through passivation or the formation of insoluble protective corrosion products. For example, newly laid insulated steel pipelines may have an average potential in excess of −0.8 V with respect to a copper/copper sulfate reference electrode, whereas old corroded...
Abstract
A variety of electrochemical techniques are used to detect and monitor material deterioration in service or in the field. This article describes the static or direct current measurements in a number of applications, including buried pipelines and storage tanks. It reviews the electrochemical impedance spectroscopy and electrochemical noise measurements in a laboratory, especially for the inspection of coatings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003839
EISBN: 978-1-62708-183-2
... Applied potential E pit Pitting potential g Gaseous state Gr Graphite Gr E Graphite electrode with fiber ends exposed HP Hot pressed i Current density i corr Corrosion current density i galv Galvanic current density l Liquid state MMC Metal-matrix...
Abstract
This article begins with the discussion on the background of metal-matrix composites (MMC) and moves into a broad description of the general parameters affecting the corrosion of MMC. It discusses the primary sources of MMC corrosion that include galvanic corrosion between MMC constituents, chemical degradation of interphases and reinforcements, microstructure-influenced corrosion, and processing-induced corrosion. The article elaborates on the corrosion behavior of specific aluminum, magnesium, titanium, copper, stainless steel, lead, depleted uranium, and zinc MMCs systems. It concludes with a description on the corrosion control of MMCs using protective coatings and inhibitors.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004210
EISBN: 978-1-62708-184-9
... , and/or H 2 S, and some can become thermally unstable and liberate corrosive species in situ. Particularly damaging in these situations is the fact that corrosion is likely to be localized leading to pitting, local area attack, crevice corrosion, and/or stress-corrosion cracking (SCC) ( Ref 15 ). Oxygen...
Abstract
This article discusses the particular corrosion problems encountered and the corrosion control methods used in petroleum production (i.e., upstream) and the storage and transportation of oil and gas (i.e., midstream) up to the refinery (i.e., downstream). These control methods include proper material selection, protective coatings, cathodic protection systems, use of inhibitors, use of nonmetallic materials, and control of the environment. The article reviews the aspects of corrosion that tend to be unique to corrosion as encountered in applications involving oil and gas exploration and production. It discusses corrosion problems that are specific to the various types of environments or equipment used in secondary recovery, including producing wells, producing flow lines, and injection wells. Corrosion mitigation methods and guidelines are also discussed for each type of environment.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003679
EISBN: 978-1-62708-182-5
... act to stifle further corrosion. In this sense, some CCCs are “self- healing.” The self-healing effect diminishes as CCCs dehydrate. As a result, the corrosion protection provided by stand-alone CCCs may decrease during exposure to ambient environments and elevated temperatures. Historical...
Abstract
Chromate conversion coatings (CCCs) are primarily used to improve adhesion of subsequently applied organic coatings or to impart corrosion resistance during atmospheric exposure. This article describes the factors that affect the formation of CCCs. It provides information on the processing sequence, morphology, composition, and properties of CCCs. The article discusses the electrochemical impedance spectroscopy approach used for evaluating conversion coatings. The test methods for various CCCs properties are also reviewed. The article examines the various coatings associated with chromate-free conversion. These include: titanium and zirconium fluorocomplexes; cerium-base, manganese-base, cobalt-base, and molybdate-base conversion coatings; hydrotalcite coatings; and organic coatings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003819
EISBN: 978-1-62708-183-2
... of these products are relatively insoluble lead salts that are deposited on the lead surface as impervious films, which tend to stifle further attack. The formation of such insoluble protective films is responsible for the high resistance of lead to corrosion by sulfuric (H 2 SO 4 ), chromic (H 2 CrO 4...
Abstract
The rate and form of corrosion that occur in a particular situation depend on many complex variables. This article discusses the rate of corrosion of lead in natural and domestic water depending on the degree of water hardness caused by calcium and magnesium salts. Lead exhibits consistent durability in all types of atmospheric exposure, including industrial, rural, and marine. The article tabulates the corrosion of lead in various natural outdoor atmospheres and the corrosion of lead alloys in various soils. It explains the factors that influence in initiating or accelerating corrosion: galvanic coupling, differential aeration, alkalinity, and stray currents. The resistance of lead and lead alloys to corrosion by a wide variety of chemicals is attributed to the polarization of local anodes caused by the formation of a relatively insoluble surface film of lead corrosion products. The article also provides information on the corrosion rate of lead in chemical environments.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003655
EISBN: 978-1-62708-182-5
..., these systems cannot provide information on localized corrosion, such as pitting and stress-corrosion cracking (SCC). An algorithm for evaluating the suitability of the ER versus LPR probes is shown in Fig. 1 ( Ref 10 ). If the electrolyte is nonconductive, then ER is recommended over LPR. If the product...
Abstract
Corrosion monitoring is important in the operation of modern industrial plants and in the use and maintenance of expensive assets such as bridges and aircrafts, because the damage caused by corrosion and the rate of the deterioration can be huge and the risks devastating. This article discusses the system considerations and installation techniques of different types of direct and indirect techniques in electrochemically based on-line corrosion monitoring process. It describes the importance of probe location and on-line corrosion monitoring techniques with examples.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003702
EISBN: 978-1-62708-182-5
... into a chemical slurry in a reaction vessel; however, it experienced localized pitting corrosion even before the anticipated service ( Fig. 1 ). The damage occurred during storage, because the new (replacement) stainless steel pipe sections were in direct contact with mists of brackish water that arose...
Abstract
This article outlines the processes by which materials are selected to prevent or control localized corrosion, galvanic corrosion, and intergranular corrosion. It reviews the operating conditions and the design of candidate materials for material selection. The article discusses various corrosion-resistant materials, including ferrous and nonferrous metals and alloys, thermoplastics, reinforced thermosetting plastics, nonmetallic linings, glass, carbon and graphite, and catalyzed resin coatings. It examines an unusual form of intergranular corrosion known as exfoliation, which occurs in aluminum-copper alloys. The article also describes three types of erosion-corrosion: liquid erosion-corrosion, cavitation, and fretting. It concludes with information on the various factors to be considered for material selection, including minimum cost or economic design, minimum corrosion, minimum investment, and minimum maintenance.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
... coatings immersed in various types of waters, in different solutions in the neutral pH range, and in soils at different geographic locations in the United States. It concludes with information on the forms of corrosion encountered in zinc coatings, including galvanic corrosion, pitting corrosion...
Abstract
Zinc is one of the most used metals, ranking fourth in worldwide production and consumption behind iron, aluminum, and copper. This article commences with an overview of the applications of zinc that can be divided into six categories: coatings, casting alloys, alloying element in brass and other alloys, wrought zinc alloys, zinc oxide, and zinc chemicals. It discusses the corrosion and electrochemical behavior of zinc and its alloys in various environments, particularly in atmospheres in which they are most widely used. The article tabulates the corrosion rates of zinc and zinc coatings immersed in various types of waters, in different solutions in the neutral pH range, and in soils at different geographic locations in the United States. It concludes with information on the forms of corrosion encountered in zinc coatings, including galvanic corrosion, pitting corrosion, and intergranular corrosion.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006415
EISBN: 978-1-62708-192-4
.... Apart from noble metals, such as gold and platinum, most metals react to form a corrosion product (e.g., oxides). If the corrosive substance is particularly aggressive, e.g., moderately concentrated sulphuric acid, then the metal surface becomes roughened with the formation of pits and cracks. Regions...
Abstract
Tribocorrosion is the subject dealing with complex, synergistic effects of chemical and mechanical conditions that cause wear. This article begins with a discussion on oxidative wear and corrosive wear, as well as quantitative measurements of corrosion, mechanical wear, and wear-corrosion effects. It illustrates the mechanism of corrosive-abrasive wear and discusses the factors affecting two-body wear. These factors include particle shape, size, density, and hardness; slurry velocity; slurry particle angle of attack; solids concentration in the slurry; hydrodynamic factors; corrosion products and the mass transfer of oxygen. The article describes slurry particle impingement tests and grinding tribocorrosion tests, as well as the factors to be considered for mitigating corrosive wear, such as materials selection, surface treatments, and environment modifications.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004149
EISBN: 978-1-62708-184-9
... is mainly controlled by the availability of oxygen, sulfate, and sulfide in the groundwater. The failure time of the copper layer in the Swedish container has been modeled, and it is predicted that the failure, both by general and pitting corrosion, would be greater than 10 6 years under realistic...
Abstract
This article addresses the long-term corrosion behavior of high-level waste (HLW) container materials, more specifically of the outer shell of the containers. It discusses time, environmental, and materials considerations for the emplacement of HLW in geological repositories. Environmental corrosion resistance of materials planned for reducing repositories is also discussed. The article reviews the design and characterization of nuclear waste repository with an oxidizing environment surrounding the waste package.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... film or protective barrier that is stable over a considerable range of oxidizing power and is eventually destroyed in strong oxidizing solutions. Under conditions in which the surface film is stable, the anodic reaction is stifled, and the metal surface is protected from corrosion. For example...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
1