1-20 of 64

Search Results for pit sealants

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005677
EISBN: 978-1-62708-198-6
... Abstract This article reviews friction and wear of various dental materials that have been studied by fundamental wear measurements, simulated service wear measurements, and clinical measurements. The materials include dental amalgam, composite restorative materials, pit and fissure sealants...
Book Chapter

By D.L. Jordan, J.L. Tardiff
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004162
EISBN: 978-1-62708-184-9
... crevice corrosion under-film corrosion galvanic corrosion pitting corrosion surface preparation uniform corrosion under-deposit corrosion electrogalvanized steel hot dip galvanized steel hot dip galvannealed steel paint and sealant systems CORROSION is a process defined as the reaction...
Book Chapter

By John E. Benfer
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004127
EISBN: 978-1-62708-184-9
... and are affected by aircraft design and service loads. Corrosion damage in the form of pitting, exfoliation, and uniform metal loss phenomena via electrochemical oxidation is controlled by the aircraft design, the materials selected, and the operating environment. Interactions between mechanical and corrosion...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004166
EISBN: 978-1-62708-184-9
... be applied to any specific problem. Only the most common forms of aluminum corrosion are covered: Stress-induced corrosion Cosmetic corrosion Crevice corrosion Galvanic corrosion In addition, pitting and intergranular corrosion can occur on bare aluminum components such as heat...
Book Chapter

By Vinod S. Agarwala
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004119
EISBN: 978-1-62708-184-9
... such as butt, overlaps, fastener, weld, and dissimilar metal joints, which make corrosion prevention and control an essential strategy to prevent crevice, pitting, and galvanic corrosion. The technologies that isolate joints from electrolytic conduction, coating systems that serve as corrosion-resistant...
Book Chapter

By Jim Knapp, Don Lemen
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005716
EISBN: 978-1-62708-171-9
... sealants for certain applications. Selected sealants often penetrate and fill porosity and microcracks in a coating structure. While the primary function of these sealants is to prevent corrosive degradation of the substrate material, they may also serve other purposes. For example, epoxy-based sealants...
Book Chapter

By Alain Adjorlolo
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004169
EISBN: 978-1-62708-184-9
... Abstract This article describes the commonly observed forms of airplane corrosion, namely: general corrosion, exfoliation corrosion, pitting corrosion, microbiologically induced corrosion, galvanic corrosion, filiform corrosion, crevice corrosion, stress-corrosion cracking, and fretting...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005709
EISBN: 978-1-62708-171-9
... coatings. It describes the factors affecting the performance of sacrificial TSCs in atmospheric and immersion environments. The article provides information on the applications of sacrificial TSCs, non-sacrificial coatings, and sealants/top coats, and exemplifies the use of sacrificial TSCs on structures...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004139
EISBN: 978-1-62708-184-9
... galvanized steel is advised. Type 316 stainless steel is also used, but it is essential to use sealants under the washers at the bolt ends and at the joint to prevent seawater penetration. Silicon bronze, aluminum bronze, nickel-aluminum bronze, and Monel are used, but these alloys are not galvanically...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004125
EISBN: 978-1-62708-184-9
... of environmental regulations and hazardous materials, nonchromated pretreatments, waterborne technology, high-solids technology, and touch-up paints. The article also deals with the use of electrodeposition coatings, powder coatings, adhesive films, paint application equipment, and non-chromated sealants...
Book Chapter

By Jose L. Villalobos, Graham Bell
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004104
EISBN: 978-1-62708-184-9
... Aluminum is attacked by both acids and bases. When exposed to fluids, aluminum is most stable in the pH range from 4 to 8.5. Contact with solutions with pH greater than 8.5 or less than 4 will cause corrosion of the aluminum. Severe pitting of aluminum can occur where iron or copper ions...
Book Chapter

By J. Gilbert Kaufman
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006546
EISBN: 978-1-62708-210-5
.... It describes pitting, galvanic, and atmospheric corrosion as well as stress-corrosion cracking, corrosion fatigue, and erosion corrosion. It also covers intergranular, exfoliation, filiform, deposition, and crevice corrosion and special cases of corrosion in soils, seawater, and automotive coolant systems...
Book Chapter

By Michael Cooney, Richard Hoffman
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described...
Book Chapter

By M. Colavita
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004131
EISBN: 978-1-62708-184-9
... (faying surfaces) is probably the process most often observed on aged parts. It usually occurs when adhesive bond or sealant between the layers breaks down, allowing moisture ingress. Depending on the severity of the attack and the material corrosion resistance characteristics, it can then develop...
Book Chapter

By Harvey P. Hack
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003663
EISBN: 978-1-62708-182-5
... attack, pitting, or stress corrosion, can be used with modifications to determine galvanic-corrosion effects. The modifications can be as simple as connecting a second metal to the system or as complex as necessary to evaluate the appropriate parameters. A change in the method of data interpretation...
Book Chapter

By Jianhai Qiu
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004170
EISBN: 978-1-62708-184-9
... corrosion, galvanic corrosion, pitting corrosion, creep corrosion, dendrite growth, fretting, stress-corrosion cracking, and whisker growth. The article presents effective measures for minimizing the moisture retention in hermetic packages and/or moisture ingress in plastic packages. It concludes...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching. corrosion crevice corrosion dealuminification...
Book Chapter

By Peter Elliott
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003703
EISBN: 978-1-62708-182-5
... seams should be avoided. (c) Incorrect trimming or poor design of seals and gaskets can create crevice sites. (d) Drain valves should be designed with sloping bottoms to avoid pitting of the base of the valve. (e) Nonhorizontal tubing can leave pools of liquid at shutdown. (f) to (j) Examples of poor...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003105
EISBN: 978-1-62708-199-3
... the use of sealants, and so on. Although many of these approaches have shown some degree of success, the application of cathodic protection has been the most successful in arresting corrosion. There does not appear to be any significant body of data relating the severity of corrosion...
Book Chapter

By Robert C. Tucker, Jr.
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001282
EISBN: 978-1-62708-170-2
... such applications, therefore, require the coating to be sealed before finishing. Sealing a coating may also help to reduce particle pullout from the surface during finishing for coatings with low cohesive strength. To ensure as complete a sealing of the coating as possible, it is necessary to apply the sealant...