Skip Nav Destination
Close Modal
Search Results for
piping system integrity monitoring
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 327 Search Results for
piping system integrity monitoring
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003655
EISBN: 978-1-62708-182-5
...: Corrosion Monitoring of Piping with High-Velocity Gas Streams High-velocity gas streams in pipes may cause problems with conventional monitoring systems. In this case, the presence of an aqueous phase is usually restricted to a thin layer on the surface of the pipe. A probe that protrudes into the pipe...
Abstract
Corrosion monitoring is important in the operation of modern industrial plants and in the use and maintenance of expensive assets such as bridges and aircrafts, because the damage caused by corrosion and the rate of the deterioration can be huge and the risks devastating. This article discusses the system considerations and installation techniques of different types of direct and indirect techniques in electrochemically based on-line corrosion monitoring process. It describes the importance of probe location and on-line corrosion monitoring techniques with examples.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004215
EISBN: 978-1-62708-184-9
... throughout the life cycle of the plant, from fabrication through inspection, maintenance and monitoring carried out periodically during operation. The inspection program should be periodically reviewed to ensure its continued suitability as the plant ages, process conditions change, and systems...
Abstract
This article focuses on the aspects associated with inspection related to pressure vessels and pipework. These aspects include inspection policy, inspection planning and procedures, inspection strategy, inspection methodology, preparation for inspection, invasive inspection, internal visual inspection, and non-invasive inspection. Inspection execution, risk-based inspection, competence assurance of inspection personnel, inspection coverage, inspection periodicity, inspection anomaly criteria, assessment of fitness, and reporting requirements, are also discussed. The article addresses the data acquisition, reporting and trending, and review and audit for the inspection. It reviews inspection techniques, including visual inspection, ultrasonic inspection, and radiographic inspection.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004110
EISBN: 978-1-62708-184-9
... States, pipeline systems are governed by the Office of Pipeline Safety (OPS) in accordance with integrity management rules. Four Step ECDA Process ECDA is a four step process that integrates data and information from pipeline, construction, and cathodic protection records, physical pipe...
Abstract
External corrosion direct assessment (ECDA) is a structured process intended for use by pipeline operators to assess and manage the impact of external corrosion on the integrity of underground pipelines. This article focuses on four steps of ECDA, namely, preassessment, indirect examinations, direct examination, and post assessment. The ECDA tool selection matrix used to determine the tool choices is also presented.
Book Chapter
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005759
EISBN: 978-1-62708-171-9
... to increase the safety awareness and the use of safety practices for gas and liquid piping and electrical equipment within thermal spray installations. construction materials dust dust collector ergonomics piping system piping system integrity monitoring preventive maintenance safety interlocks...
Abstract
This article discusses the safety issues associated with the design and operation of thermal spray booths and spray box structures and the equipment or systems required for operating thermal spray processes. It describes the design elements necessary to mitigate sound, dust and fume, ultraviolet light, and mechanical hazards. The means selected for safeguarding personnel must be based on a formal risk assessment that meets ANSI/RIA standards. The safeguards include sensing devices, barriers, awareness signals, procedures, and training. It also provides guidelines that are intended to increase the safety awareness and the use of safety practices for gas and liquid piping and electrical equipment within thermal spray installations.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004214
EISBN: 978-1-62708-184-9
..., the integrity of a significant part of the pipeline system is assured. If such locations are found to be experiencing corrosion, a potential integrity problem is identified, and remedial action may be prescribed. Real-Time Corrosion Measurement and Monitoring One of the problems associated with corrosion...
Abstract
This article discusses the effects of parameters on corrosivity and explains why it is critical to examine the parameter interactions prior to capturing the synergistic effects of the parameters on corrosion. It examines the methods of internal corrosion prediction for multiphase pipelines. The article reviews methodologies to perform internal corrosion direct assessment for pipelines. Real-time monitoring techniques for assessing actual corrosion at critical locations are discussed. The article also presents the case studies for multi-technique electrochemical corrosion monitoring.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004167
EISBN: 978-1-62708-184-9
... pipe-to-soil measurements made during the monitoring of a cathodically protected pipeline at a light rail crossing. During the monitoring shown in Fig. 8(a) , the transit system was operated diode grounded, and stray-current flow was always from the track and toward the pipe in the immediate area...
Abstract
This article presents the fundamentals of stray-current corrosion caused by electric rail transit systems. It describes the various corrosion-control design elements for the electric rail system. These design elements include substation spacing and grounding, track and track slab design, and construction acceptance criteria. The impacts of the electric rail construction in underground utilities are discussed. Direct physical interferences, maintenance access encroachments, stray-current effects, and utility relocation design considerations, are discussed. The article also reviews construction issues such as funding, sequencing, and working clearances. It concludes with information on the post-construction monitoring and maintenance for stray-current corrosion control.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... inhibitors degradation environmentally assisted cracking failure analysis heat exchangers inspection iron lubricants microbially induced corrosion piping sampling steel tanks MICROORGANISMS can directly or indirectly affect the integrity of many materials used in industrial systems. Most...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003654
EISBN: 978-1-62708-182-5
... intrusion to the exterior wall will prevent corrosion. To detect moisture intrusion, a small conductivity probe can be pushed through the insulation to the outer surface of the pipe. By monitoring the local conductivity as a function of insulation depth, the amount and location of moisture can be determined...
Abstract
A variety of electrochemical techniques are used to detect and monitor material deterioration in service or in the field. This article describes the static or direct current measurements in a number of applications, including buried pipelines and storage tanks. It reviews the electrochemical impedance spectroscopy and electrochemical noise measurements in a laboratory, especially for the inspection of coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004113
EISBN: 978-1-62708-184-9
... the tank is in contact with the soil. This article describes the soil characteristics and addresses cathodic protection (CP) criteria for submerged metallic piping systems. It provides information on the data required for designing a CP system, alone or in conjunction with a protective coating system...
Abstract
Steel storage tanks are the primary means for storing large volumes of liquids and gaseous products. The stored fluid could be water, but it could also be volatile, corrosive, and flammable fluid requiring special precautions for storage as well. Corrosion is generally worst where the tank is in contact with the soil. This article describes the soil characteristics and addresses cathodic protection (CP) criteria for submerged metallic piping systems. It provides information on the data required for designing a CP system, alone or in conjunction with a protective coating system. These data are collected from predesign site assessments, tank electrical characteristics, and soil-resistivity measurements. The article addresses NACE Standard RP0169, which gives requirements and desired characteristics for coating in conjunction with CP. It also explains the methods of protecting aboveground storage tanks and underground storage tanks.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003653
EISBN: 978-1-62708-182-5
... of cooling waters ( Ref 2 ). Figure 1 shows an on-line monitoring system. Parameters such as pH, temperature, conductivity, and corrosion currents are monitored. Other parameters, including heat-transfer rates across piping, water-flow rate, pressure-drop changes, and biofilm sensors, as well...
Abstract
This article focuses on the methods that are being developed for detecting and monitoring corrosion: electrochemical methods, electromagnetic or sound wave methods, fiber-optic technology, fluorescence methods, and the Diffracto Sight method. It reviews the importance of data management and the Corrosion Expert System. It concludes with information on the simulation and modeling for incorporating the mechanisms of corrosion prevention into military hardware systems design and operation.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002387
EISBN: 978-1-62708-193-1
... and creepcrack growth. Practical methods based on replication and parametric approaches are also discussed. corrosion damage creep crack growth creep life creep-rupture properties failure prevention FAILURE CONTROL METHODS for piping and process systems encompass the inspection, monitoring, life...
Abstract
This article focuses on the subject of proactive or predictive maintenance with particular emphasis on the control and prediction of corrosion damage for life extension and failure prevention. It discusses creep life assessment from the perspective of creep-rupture properties and creepcrack growth. Practical methods based on replication and parametric approaches are also discussed.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004213
EISBN: 978-1-62708-184-9
... from the old section and (or) cathodically protected. A similar corrosive condition can occur if, during work on an existing piping system, tools cut or scrape the pipe and expose areas of bright steel. The potential of these bright spots will be more negative than the remainder of the pipe, resulting...
Abstract
This article describes the mechanisms of differential corrosion cells corrosion, microbiologically influenced corrosion, and stray direct current corrosion. It discusses the most common causes and contributing factors for corrosion and stress-corrosion cracking, as well as prevention, mitigation, detection, and repair processes.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005766
EISBN: 978-1-62708-165-8
..., as illustrated in Fig. 2 . When a dust particle travels through the two focal points in the center of the pipe in succession, the light is scattered by this particle. The scattered light is collected by a system of lenses, received by photocells, and converted into electrical signals. From the difference...
Abstract
Quenching severity is agitation-dependent and therefore, magnitude and turbulence of fluid flow around a part in the quench zone are critically important relative to the uniformity of heat transfer throughout the quenching process. This article provides an overview of the measurement principles for different types of flow devices used in production quench tanks, namely, vane sensors, fluid-quench sensors, caterpillar quench-evaluation sensors, and thermal probes. Various methods of flow measurement in commercial quench tanks may be acceptable for adequate control to ensure a high-quality production process.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003658
EISBN: 978-1-62708-182-5
... that are insensitive to errors and false alarms, and this often means systems that are specific to a given inspection scenario. As an example, a guided wave inspection system for insulated piping would be quite different than one used for detecting the presence of wing icing. Similarly, microwave NDE systems...
Abstract
Microwave and guided wave (GW) nondestructive evaluation (NDE) techniques are capable of detecting corrosion damage, cracks, and other defect types in inaccessible areas. This article describes the operation principles of the techniques and provides information on hidden corrosion detection and the applications of microwave NDE devices and GW ultrasonic NDE devices.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005931
EISBN: 978-1-62708-166-5
...), closed valves, pipe break, as well as underload caused by belts breaking, coupling malfunction, pump dry running, and so on. They do not require any external sensors and can be easily applied in new or retrofitted control systems for monitoring of three-phase asynchronous motors. Current Monitoring...
Abstract
Heat treating furnaces require different control systems and integration for achieving optimum technical results and enabling safe operation. This article focuses on atmosphere furnaces, with some coverage on controls for vacuum furnaces. Heat treating operations require reliable monitoring and control of motion and position of various mechanical components with the help of mechanical limit switches, proximity sensors, and distance- and position-measuring devices. Using inputs from both flow meters and sensors, such as thermocouples and oxygen sensors, flow measurement control systems must be able to adjust the flow of gases for process optimization. The operator interface of a furnace-control system displays critical information such as the furnace temperature, atmosphere status, alarms, electronic chart recorders, recipe, and maintenance. A supervisory control and data-acquisition (SCADA) system is used to monitor, collect, and store data from multiple pieces of equipment.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004112
EISBN: 978-1-62708-184-9
... system (GPS) surveying equipment Voltmeters To determine a pipe-to-electrolyte potential value, a voltmeter must measure the potential drop across an external circuit resistance that varies depending on the type of environment. To compensate for these variable conditions, voltmeters must...
Abstract
A close-interval survey (CIS) is a series of structure-to-electrolyte direct current potential measurements performed at regular intervals for assessing the level of cathodic protection (CP) on pipelines and other buried or submerged metallic structures. This article describes the equipment required to perform the CIS. It provides a discussion on the activities that should be performed during the preparation and execution of the CIS. The dynamic stray current identification and compensation by CIS is discussed briefly. The article also explains various factors involved in the validation of CIS data. It concludes with information on CIS data interpretation.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006454
EISBN: 978-1-62708-190-0
... in high-noise applications such as condition monitoring of high-energy piping systems in electric power stations. Fundamental to this freedom to choose the monitoring frequency is the fact that the AE source itself is essentially broadband (see the discussion of the primitive pulse in the previous section...
Abstract
Acoustic emission is the generation of stress waves by sudden movement in stressed materials. This article begins with a comparison of acoustic emission from most other nondestructive testing (NDT) methods, and discusses the range of applicability of acoustic emission. It describes the instrumentation principles of acoustic emission and reviews the role of acoustic emission in materials studies. The article illustrates the testing of metal-matrix composites (MMCs) using acoustic emission and the use of acoustic emission inspection in production quality control. It concludes with information on the structural test applications of acoustic emission inspection to find defects and to assess or ensure structural integrity.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006449
EISBN: 978-1-62708-190-0
... present in the mill that were not present in the laboratory. Mill conditions include lack of surface cleanliness on the pipe, lack of operator skill or attention to the equipment, high variability in product characteristics (such that the NDE system cannot distinguish between indications that should...
Abstract
This article provides information on the application of nondestructive examination (NDE) technologies to tube and pipe products. These include modeling and simulation methods, eddy-current methods, magnetic methods, acoustic methods, and physical methods. A summary of nondestructive examination methods based on flaw type and product stage is presented in a table. The article also discusses in-service inspection of tubular products and presents an example that illustrates the importance of nondestructive testing (NDT) for welds in austenitic stainless steel tubing.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005583
EISBN: 978-1-62708-174-0
... is applied to produce a forged weld. High-frequency resistance welding is an automated process and is not adaptable to manual welding. High-frequency resistance welding was developed during the late 1940s and early 1950s to fill the need for high-integrity butt joints and seam welds in pipe and tubing...
Abstract
High-frequency resistance welding (HFRW) is a process that uses high-frequency currents to concentrate the welding heat at the desired location. This article focuses on the fundamentals, advantages, limitations, and applications of HFRW. It discusses the personnel and equipment requirements as well as safety considerations necessary for the process. The article concludes with a discussion on the techniques for inspection and quality control of HFRW.
1