Skip Nav Destination
Close Modal
Search Results for
peritectoid transformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-17 of 17 Search Results for
peritectoid transformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006228
EISBN: 978-1-62708-163-4
... Abstract Eutectoid and peritectoid transformations are classified as solid-state invariant transformations. This article focuses primarily on the structures from eutectoid transformations with emphasis on the classic iron-carbon system of steel. It reviews peritectoid phase equilibria...
Abstract
Eutectoid and peritectoid transformations are classified as solid-state invariant transformations. This article focuses primarily on the structures from eutectoid transformations with emphasis on the classic iron-carbon system of steel. It reviews peritectoid phase equilibria that are very common in several binary systems. The addition of substitutional alloying elements causes the eutectoid composition and temperature to shift in the iron-carbon system. The article graphically illustrates the effect of various substitutional alloying elements on the eutectoid transformation temperature and effective carbon content. The partitioning effect of substitutional alloying elements, such as chromium, manganese, and silicon, in pearlitic steel is also illustrated.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003734
EISBN: 978-1-62708-177-1
... Abstract Solid-state transformations from invariant reactions are of three types: eutectoid, peritectoid, and monotectoid transformations. This article focuses on structures from eutectoid transformations with an emphasis on the classic iron-carbon system of steel. It illustrates the morphology...
Abstract
Solid-state transformations from invariant reactions are of three types: eutectoid, peritectoid, and monotectoid transformations. This article focuses on structures from eutectoid transformations with an emphasis on the classic iron-carbon system of steel. It illustrates the morphology of a pearlite nodule and the effect of various substitutional alloy elements on the eutectoid transformation temperature and effective carbon content, respectively. Peritectic and peritectoid phase equilibria are very common in several binary systems. The article reviews structures from peritectoid reactions and details the formation of peritectic structures that can occur by at least three mechanisms: peritectic reaction, peritectic transformation, and direct precipitation of beta from the melt.
Image
Published: 01 December 2004
surrounded peritectically by CoSn 2 layers (gray), followed by a peritectoid envelope of the CoSn 3 phase that was not included in the phase diagram in Ref 18 , but only found during a study of the peritectic transformation of CoSn ( Ref 35 ). The temperatures of peritectic formation of CoSn and CoSn 2
More
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006226
EISBN: 978-1-62708-163-4
... system exhibits a peritectic cascade. In this case, it is possible to get layers of each phase around the initial pro-peritectic phase, as shown in Fig. 15 The cascade in the phase diagram for this alloy includes a peritectic and a peritectoid transformation. As shown in a detailed study...
Abstract
Similar to the eutectic group of invariant transformations is a group of peritectic reactions, in which a liquid and solid phase decomposes into a solid phase on cooling through the peritectic isotherm. This article describes the equilibrium freezing and nonequilibrium freezing of peritectic alloys. It informs that peritectic reactions or transformations are very common in the solidification of metals. The article discusses the formation of peritectic structures that can occur by three mechanisms: peritectic reaction, peritectic transformation, and direct precipitation of beta from the melt. It provides a discussion on the peritectic structures in iron-base alloys and concludes with information on multicomponent systems.
Image
Published: 01 December 2008
Fig. 17 Microstructure of a Sn-17Co alloy that was cooled to 1000 °C (1830 °F) and held 2 h, then cooled to 225 °C (435 °F) and held 22 h. The primary γ-phase has completely transformed and dissolved into relatively small CoSn crystals that form the dark centers surrounded peritectically
More
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005214
EISBN: 978-1-62708-187-0
... Abstract This article describes the three solidification mechanisms of peritectic structures, namely, peritectic reaction, peritectic transformation, and direct precipitation. It discusses the theoretical analysis, which shows that the rate of the peritectic transformation is influenced...
Abstract
This article describes the three solidification mechanisms of peritectic structures, namely, peritectic reaction, peritectic transformation, and direct precipitation. It discusses the theoretical analysis, which shows that the rate of the peritectic transformation is influenced by the diffusion rate and the extension of the beta-phase region in the phase diagram. The article also provides information on the peritectic transformations in multicomponent systems.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003149
EISBN: 978-1-62708-199-3
... the various elements and zirconium exhibit a peritectic or a peritectoid reaction at the zirconium-rich end. Beta-Stabilizing Elements Beta-stabilizing elements lower the α-to-β transformation temperature. Typical β stabilizers include iron, chromium, nickel, molybdenum, copper, niobium, tantalum...
Abstract
This article discusses the general characteristics, primary and secondary fabrication methods, product forms, and corrosion resistance of zirconium and hafnium. It describes the physical metallurgy of zirconium and its alloys, providing details on allotropic transformation and anisotropy that profoundly influences the engineering properties of zirconium and its alloys. Tables listing the values for chemical composition and tensile properties for nuclear and nonnuclear grades of zirconium are also provided.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006250
EISBN: 978-1-62708-169-6
... growth. The article also describes the various types of solid-state transformations such as isothermal transformation and athermal transformation, resulting from the heat treatment of nonferrous alloys. It provides information on the homogenization of chemical composition within a cast structure...
Abstract
This article introduces the mechanism of diffusion and the common types of heat treatments such as annealing and precipitation hardening, which are applicable to most ferrous and nonferrous systems. Three distinct processes occur during annealing: recovery, recrystallization, and grain growth. The article also describes the various types of solid-state transformations such as isothermal transformation and athermal transformation, resulting from the heat treatment of nonferrous alloys. It provides information on the homogenization of chemical composition within a cast structure.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001084
EISBN: 978-1-62708-162-7
..., refining, and melting. It also discusses the primary and secondary fabrication of zirconium and hafnium and its alloys. The article talks about the metallurgy of zirconium and its alloys with emphasis on allotropic transformation, cold work and recrystallization, anisotropy and preferred orientation...
Abstract
Zirconium, hafnium, and titanium are produced from ore that generally is found in a heavy beach sand containing zircon, rutile, and ilmenite. This article discusses the processing methods of these metals, namely, liquid-liquid separation process, distillation separation process, refining, and melting. It also discusses the primary and secondary fabrication of zirconium and hafnium and its alloys. The article talks about the metallurgy of zirconium and its alloys with emphasis on allotropic transformation, cold work and recrystallization, anisotropy and preferred orientation, and the role of oxygen. It concludes by providing useful information on the applications of reactor and industrial grades of zirconium alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001415
EISBN: 978-1-62708-173-3
...)</xref> Titanium undergoes an allotropic phase transformation at about 885 °C (1625 °F), changing from a close-packed hexagonal crystal structure (alpha phase) to a body-centered cubic crystal structure (beta phase). The transformation temperature (beta transus, or the completion of transformation to beta...
Abstract
This article emphasizes the physical metallurgy of titanium and titanium alloys along with their microstructural response to fusion welding condition. The titanium alloys are classified into unalloyed or commercially pure titanium, alpha and near-alpha alloys, alpha-beta alloys, and metastable beta alloys. The article further discusses the weld microstructure for alpha-beta and metastable beta alloys and describes welding defects observed in titanium alloys. The influence of macro- and microstructural characteristics of titanium weldment on mechanical properties is also discussed. The article concludes with a discussion on the different welding processes used in the welding of titanium and titanium alloys.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003765
EISBN: 978-1-62708-177-1
... by remelting pig iron, scrap, and other additions. For differentiation from steel and cast steel, cast iron is defined as a cast alloy with a carbon content (min 2.03%) that ensures the solidification of the final phase with a eutectic transformation. Depending on chemical specifications, cast irons can...
Abstract
This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other. The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron samples.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.9781627081771
EISBN: 978-1-62708-177-1
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003800
EISBN: 978-1-62708-177-1
... abrasion aging. site). A supersaturated, nonequilibrium ortho- debris from the abrasion track. aging. A change in properties that occurs at am- rhombic phase formed by a diffusionless bient or moderately elevated temperatures af- transformation of the b phase in certain alloys. abrasion process...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003085
EISBN: 978-1-62708-199-3
... liquid and solid) Peritectoid (involves solid only) Fig. 7 Hypothetical binary phase diagram showing intermediate phases formed by various invariant reactions and a polymorphic transformation Fig. 8 Hypothetical binary phase diagram showing three intermetallic line compounds...
Abstract
Alloy phase diagrams are useful for the development, fabrication, design and control of heat treatment procedures that will produce the required mechanical, physical, and chemical properties of new alloys. They are also useful in solving problems that arise in their performance in commercial applications, thus improving product predictability. This article describes different equilibrium phase diagrams (unary, binary, and ternary) and microstructures, description terms, and general principles of reading alloy phase diagrams. Further, the article discusses plotting schemes; areas in a phase diagram; and the position and shapes of the points, lines, surfaces, and intersections, which are controlled by thermodynamic principles and properties of all phases that comprise the system. It also illustrates the application of the stated principles with suitable phase diagrams.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003059
EISBN: 978-1-62708-200-6
... transformation; peritectoid melting to a liquid and solid phase of separate compositions (TiO solid solution) is also a common occurrence. Again, the temperatures at which these reactions occur vary more as the stoichiometry range of the particular compound widens. Some compounds may sublime to an equilibrium...
Abstract
This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal structure, density, mechanical properties, physical properties, electrical properties, thermal properties, and magnetic properties.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001102
EISBN: 978-1-62708-162-7
... reported to promote ⟨111⟩ slip vectors in NiAl; however, no improvement in ductility was observed ( Ref 115 , 116 ). On the other hand, limited tensile ductility was obtained in NiAl alloyed with cobalt ( Ref 117 ), which promotes additional deformation modes through possibly martensitic transformation...
Abstract
Ordered intermetallic compounds based on aluminides and silicides constitute a unique class of metallic materials that have promising physical and mechanical properties for structural applications at elevated temperatures. This article provides useful information on mechanical and metallurgical properties, material processing and fabrication, structural applications, mechanical behavior, environmental embrittlement, alloying effects, and crystal structure of aluminides of nickel, iron, titanium, and silicides. It describes the cleavage and intergranular fracture in trialuminides.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005772
EISBN: 978-1-62708-165-8
... process, and critical dimensional tolerances can distort due to high-temperature creep, relieving of stresses, and phase transformations of the substrate material that can occur at these processing temperatures. Postmachining or grinding after boriding is very difficult to perform due to the extreme high...
Abstract
Boriding is a thermochemical diffusion-based surface-hardening process that can be applied to a wide variety of ferrous, nonferrous, and cermet materials. It is performed on metal components as a solution for extending the life of metal parts that wear out too quickly in applications involving severe wear. This article presents a variety of methods and media used for boriding of ferrous materials, and explains their advantages, limitations, and applications. These methods include pack cementation boriding, gas boriding, plasma boriding, electroless salt bath boriding, electrolytic salt bath boriding, and fluidized-bed boriding. The article briefly describes the chemical vapor deposition process, which has emerged to be dominant among metal-boride deposition processes.