Skip Nav Destination
Close Modal
Search Results for
peritectic transformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 93 Search Results for
peritectic transformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2008
Fig. 7 Start of the peritectic transformation in the same directionally solidified Cu-20Sn alloy shown in Fig. 5 , but at higher magnification. Note the homogeneous thickness of the β-layers (gray) around the primary α (white). The matrix (dark) is a mixture of tin-rich phases. Mechanically
More
Image
Published: 01 December 2008
Fig. 10 The peritectic transformation in a system with a high diffusion rate in the β-phase. (a) The phase diagram. (b) Concentration distribution. The dashed lines in the concentration profile are for a system with a low diffusion rate in the β-phase where the volume fraction of β increases
More
Image
Published: 01 December 2008
Fig. 13 The peritectic transformation during continuous cooling in a system with a low diffusion rate and where the volume fraction of β increases with decreasing temperature. (a) The phase diagram. (b) Concentration distribution
More
Image
Published: 01 December 2004
Fig. 32 Start of the peritectic transformation in the same directionally solidified Cu-20Sn alloy shown in Fig. 30 , but at higher magnification. Note the homogeneous thickness of the β layers (gray) around the primary α (white). The matrix (dark) is a mixture of tin-rich phases. Mechanically
More
Image
Published: 01 December 2004
Fig. 33 Peritectic transformation of an Sb-14Ni alloy that was slowly cooled to 650 °C (1200 °F) and held 1 h, then cooled to 615 °C (1140 °F) and held 10 min (peritectic temperature: 626 °C, or 1159 °F). An irregular layer of NiSb 2 crystals (dark) is formed around the coarse primary NiSb
More
Image
Published: 01 December 2004
Fig. 36 Temperature dependence of the peritectic transformation Cu 5 Cd 8 + liquid → CuCd 3 in a Cd-10Cu alloy at 40 and 160 min isothermal annealing. Source: Ref 37
More
Image
Published: 27 April 2016
Fig. 10 Start of the peritectic transformation in the same directionally solidified Cu-20Sn alloy shown in Fig. 9 , but at higher magnification. Note the homogeneous thickness of the β layers (gray) around the primary α (white). The matrix (dark) is a mixture of tin-rich phases. Original
More
Image
Published: 27 April 2016
Fig. 11 Peritectic transformation of an Sb-14Ni alloy that was slowly cooled to 650 °C (1200 °F) and held 1 h, then cooled to 615 °C (1140 °F) and held 10 min (peritectic temperature: 626 °C, or 1159 °F). An irregular layer of NiSb 2 crystals (dark) is formed around the coarse primary NiSb
More
Image
Published: 27 April 2016
Fig. 12 Temperature dependence of the peritectic transformation Cu 5 Cd 8 + liquid → CuCd 3 in a Cd-10Cu alloy at 40 and 160 min isothermal annealing. Source: Ref 7 as published in Ref 4
More
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005214
EISBN: 978-1-62708-187-0
... Abstract This article describes the three solidification mechanisms of peritectic structures, namely, peritectic reaction, peritectic transformation, and direct precipitation. It discusses the theoretical analysis, which shows that the rate of the peritectic transformation is influenced...
Abstract
This article describes the three solidification mechanisms of peritectic structures, namely, peritectic reaction, peritectic transformation, and direct precipitation. It discusses the theoretical analysis, which shows that the rate of the peritectic transformation is influenced by the diffusion rate and the extension of the beta-phase region in the phase diagram. The article also provides information on the peritectic transformations in multicomponent systems.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006226
EISBN: 978-1-62708-163-4
... Abstract Similar to the eutectic group of invariant transformations is a group of peritectic reactions, in which a liquid and solid phase decomposes into a solid phase on cooling through the peritectic isotherm. This article describes the equilibrium freezing and nonequilibrium freezing...
Abstract
Similar to the eutectic group of invariant transformations is a group of peritectic reactions, in which a liquid and solid phase decomposes into a solid phase on cooling through the peritectic isotherm. This article describes the equilibrium freezing and nonequilibrium freezing of peritectic alloys. It informs that peritectic reactions or transformations are very common in the solidification of metals. The article discusses the formation of peritectic structures that can occur by three mechanisms: peritectic reaction, peritectic transformation, and direct precipitation of beta from the melt. It provides a discussion on the peritectic structures in iron-base alloys and concludes with information on multicomponent systems.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003734
EISBN: 978-1-62708-177-1
... of a pearlite nodule and the effect of various substitutional alloy elements on the eutectoid transformation temperature and effective carbon content, respectively. Peritectic and peritectoid phase equilibria are very common in several binary systems. The article reviews structures from peritectoid reactions...
Abstract
Solid-state transformations from invariant reactions are of three types: eutectoid, peritectoid, and monotectoid transformations. This article focuses on structures from eutectoid transformations with an emphasis on the classic iron-carbon system of steel. It illustrates the morphology of a pearlite nodule and the effect of various substitutional alloy elements on the eutectoid transformation temperature and effective carbon content, respectively. Peritectic and peritectoid phase equilibria are very common in several binary systems. The article reviews structures from peritectoid reactions and details the formation of peritectic structures that can occur by at least three mechanisms: peritectic reaction, peritectic transformation, and direct precipitation of beta from the melt.
Image
Published: 01 December 2008
Fig. 3 Mechanisms of peritectic reaction and transformation. (a) Lateral growth of a β-layer along the α/liquid interface during peritectic reaction by liquid diffusion. (b) Thickening of a β-layer by solid-state diffusion during peritectic transformation. The solid arrows indicate growth
More
Image
Published: 01 December 2004
Fig. 25 Mechanisms of peritectic reaction and transformation. (a) Lateral growth of a β layer along the α/liquid interface during peritectic reaction by liquid diffusion. (b) Thickening of a β layer by solid-state diffusion during peritectic transformation. The solid arrows indicate growth
More
Image
Published: 27 April 2016
Fig. 6 Mechanisms of peritectic reaction and transformation. (a) Lateral growth of a β layer along the α-liquid interface during peritectic reaction by liquid diffusion. (b) Thickening of a β layer by solid-state diffusion during peritectic transformation. The solid arrows indicate growth
More
Image
Published: 01 December 2004
Fig. 53 Peritectic reaction and transformation of Fe-0.14C alloy during solidification and at 1768 K ( GT = 4.3 K/mm, cooling rate = 20 K/min). (a) 0 s. (b) 1 30 s. (c) 2 s. Source: Ref 28
More
Image
Published: 01 December 2004
Fig. 54 Peritectic reaction and transformation of Fe-0.42C alloy during isothermal holding at 1765 K (same scale). (a) 0 s. (b) 0.2 s. (c) 3 s. (d) 7 s. Source: Ref 28
More
Image
Published: 01 December 2008
Fig. 19 Three stages of a peritectic reaction in a unidirectionally solidified high-speed steel. (a) First-stage structure. Dark gray is austenite, white is ferrite. The mottled structure is quenched liquid. (b) Subsequent peritectic transformation of (a). (c) Further peritectic transformation
More
Image
Published: 01 December 2004
Fig. 9 Three stages of peritectic reaction in a directionally solidified high-speed steel. (a) First-stage structure. Dark gray is austenite; white is ferrite. The mottled structure is quenched liquid. (b) Subsequent peritectic transformation of (a). (c) Further peritectic transformation of (b
More
Image
Published: 01 December 2004
Fig. 48 Three stages of a peritectic reaction in a unidirectionally solidified high-speed steel. (a) First-stage structure. Dark gray is austenite; white is ferrite. The mottled structure is quenched liquid. (b) Subsequent peritectic transformation of (a). (c) Further peritectic transformation
More
1