1-20 of 100 Search Results for

peritectic reaction

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 27 April 2016
Fig. 2 Typical peritectic phase diagrams. (a) Peritectic reaction α + liquid → β and peritectoid reaction α + β → γ. (b) Peritectic formation of intermetallic phases from a high-melting intermetallic. (c) Peritectic cascade between high- and low-melting components. Adapted from Ref 1 More
Image
Published: 01 December 2008
Fig. 1 Typical peritectic phase diagrams. (a) Peritectic reaction α + liquid → β and peritectoid reaction α + β → γ. (b) Peritectic formation of intermetallic phases from a high-melting intermetallic. (c) Peritectic cascade between high- and low-melting components. Source: Ref 1 More
Image
Published: 01 December 2004
Fig. 19 Typical peritectic phase diagrams. (a) Peritectic reaction α + liquid → β and peritectoid reaction α + β → γ. (b) Peritectic formation of intermetallic phases from a high-melting intermetallic. (c) Peritectic cascade between high- and low-melting components. Source: Ref 2 More
Image
Published: 27 April 2016
Fig. 3 Phase diagram with a peritectic reaction. Source: Ref 2 More
Image
Published: 27 April 2016
Fig. 6 Mechanisms of peritectic reaction and transformation. (a) Lateral growth of a β layer along the α-liquid interface during peritectic reaction by liquid diffusion. (b) Thickening of a β layer by solid-state diffusion during peritectic transformation. The solid arrows indicate growth More
Image
Published: 27 April 2016
Fig. 9 Start of the peritectic reaction in a directionally-solidified Cu-20Sn alloy. Primary α dendrites (white) are covered by peritectically formed β layer (gray) shortly after the temperature reaches T p . Matrix (dark) is a mixture of tin-rich phases. Original magnification: 40×. Source More
Image
Published: 27 April 2016
Fig. 18 Nickel distribution after peritectic reaction in a steel containing 4 wt% Ni. The temperature gradient was 60 K/cm. Calculations were made at different solidification rates. The dotted line ws the nickel distribution at the start of the peritectic reaction. δ, primary ferrite; γ More
Image
Published: 27 April 2016
Fig. 20 Three stages of a peritectic reaction in a unidirectionally solidified high-speed steel. (a) First-stage structure. Dark gray is austenite; white is ferrite. The mottled structure is quenched liquid. (b) Subsequent peritectic transformation of (a). (c) Further peritectic transformation More
Image
Published: 27 April 2016
Fig. 24 Three-phase equilibria in a ternary system with a peritectic reaction. Adapted from Ref 3 More
Image
Published: 01 December 1998
Fig. 11 Aluminum-chromium phase diagram illustrating the peritectic reaction More
Image
Published: 01 December 2008
Fig. 2 Phase diagram with a peritectic reaction More
Image
Published: 01 December 2008
Fig. 3 Mechanisms of peritectic reaction and transformation. (a) Lateral growth of a β-layer along the α/liquid interface during peritectic reaction by liquid diffusion. (b) Thickening of a β-layer by solid-state diffusion during peritectic transformation. The solid arrows indicate growth More
Image
Published: 01 December 2008
Fig. 5 Start of the peritectic reaction in a directionally solidified Cu-20Sn alloy. Primary α-dendrites (white) are covered by peritectically formed β-layer (gray) shortly after the temperature reaches T p . Matrix (dark) is a mixture of tin-rich phases. Mechanically polished, etched in HNO More
Image
Published: 01 December 2008
Fig. 6 Start of the peritectic reaction in a directionally solidified Cu-70Sn alloy. The primary ε-phase (dark) is covered by the peritectically formed η-layer (white), which thickens with increasing undercooling below T p . The matrix is the Sn-η eutectic. Mechanically polished, etched More
Image
Published: 01 December 2008
Fig. 9 Microstructure in a Cd-10Cu sample that has passed a peritectic reaction. The primary Cu 5 Cd 8 crystals are white, the dark matrix is cadmium, and the peritectically formed CuCd 3 is gray. More
Image
Published: 01 December 2008
Fig. 12 Temperature range of peritectic reaction in iron-carbon alloys as a function of carbon content and the solidification rate. The temperature gradient, G , is 6000 K/m. More
Image
Published: 01 December 2008
Fig. 15 Nickel distribution after peritectic reaction in a steel containing 4 wt% Ni. The temperature gradient was 60 K/cm. Calculations were made at different solidification rates. The dotted line shows the nickel distribution at the start of the peritectic reaction. δ is primary ferrite, γ More
Image
Published: 01 December 2008
Fig. 19 Three stages of a peritectic reaction in a unidirectionally solidified high-speed steel. (a) First-stage structure. Dark gray is austenite, white is ferrite. The mottled structure is quenched liquid. (b) Subsequent peritectic transformation of (a). (c) Further peritectic transformation More
Image
Published: 01 January 1997
Fig. 2 Aluminum-chromium phase diagram illustrating the peritectic reaction More
Image
Published: 01 December 2004
Fig. 11 Light micrograph illustrating the peritectic reaction for α p in a Ti-48Al alloy. Source: Ref 26 More