Skip Nav Destination
Close Modal
Search Results for
peritectic reaction
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 100 Search Results for
peritectic reaction
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 19 Typical peritectic phase diagrams. (a) Peritectic reaction α + liquid → β and peritectoid reaction α + β → γ. (b) Peritectic formation of intermetallic phases from a high-melting intermetallic. (c) Peritectic cascade between high- and low-melting components. Source: Ref 2
More
Image
Published: 27 April 2016
Fig. 2 Typical peritectic phase diagrams. (a) Peritectic reaction α + liquid → β and peritectoid reaction α + β → γ. (b) Peritectic formation of intermetallic phases from a high-melting intermetallic. (c) Peritectic cascade between high- and low-melting components. Adapted from Ref 1
More
Image
Published: 01 December 2008
Fig. 1 Typical peritectic phase diagrams. (a) Peritectic reaction α + liquid → β and peritectoid reaction α + β → γ. (b) Peritectic formation of intermetallic phases from a high-melting intermetallic. (c) Peritectic cascade between high- and low-melting components. Source: Ref 1
More
Image
Published: 01 December 2004
Fig. 53 Peritectic reaction and transformation of Fe-0.14C alloy during solidification and at 1768 K ( GT = 4.3 K/mm, cooling rate = 20 K/min). (a) 0 s. (b) 1 30 s. (c) 2 s. Source: Ref 28
More
Image
Published: 01 December 2004
Fig. 54 Peritectic reaction and transformation of Fe-0.42C alloy during isothermal holding at 1765 K (same scale). (a) 0 s. (b) 0.2 s. (c) 3 s. (d) 7 s. Source: Ref 28
More
Image
Published: 01 December 2004
Fig. 9 Three stages of peritectic reaction in a directionally solidified high-speed steel. (a) First-stage structure. Dark gray is austenite; white is ferrite. The mottled structure is quenched liquid. (b) Subsequent peritectic transformation of (a). (c) Further peritectic transformation of (b
More
Image
Published: 01 December 2004
Fig. 11 Light micrograph illustrating the peritectic reaction for α p in a Ti-48Al alloy. Source: Ref 26
More
Image
Published: 01 December 2004
Fig. 12 Transmission electron micrograph illustrating the peritectic reaction for γ p in a Ti-52Al alloy. Source: Ref 26
More
Image
Published: 01 December 2004
Fig. 25 Mechanisms of peritectic reaction and transformation. (a) Lateral growth of a β layer along the α/liquid interface during peritectic reaction by liquid diffusion. (b) Thickening of a β layer by solid-state diffusion during peritectic transformation. The solid arrows indicate growth
More
Image
Published: 01 December 2004
Fig. 30 Start of the peritectic reaction in a directionally solidified Cu-20Sn alloy. Primary α dendrites (white) are covered by peritectically formed β layer (gray) shortly after the temperature reaches T p . Matrix (dark) is a mixture of tin-rich phases. Mechanically polished, etched
More
Image
Published: 01 December 2004
Fig. 31 Start of the peritectic reaction in a directionally solidified Cu-70Sn alloy. The primary ε phase (dark) is covered by the peritectically formed η layer (white), which thickens with increasing undercooling below T p . The matrix is the Sn-η eutectic. Mechanically polished, etched
More
Image
Published: 01 December 2004
Fig. 46 Nickel distribution after peritectic reaction in a steel containing 4 wt% Ni. The temperature gradient was 60 K/cm. Calculations were made at different solidification rates. The dotted line shows the nickel distribution at the start of the peritectic reaction. δ is primary ferrite; γ
More
Image
Published: 01 December 2004
Fig. 48 Three stages of a peritectic reaction in a unidirectionally solidified high-speed steel. (a) First-stage structure. Dark gray is austenite; white is ferrite. The mottled structure is quenched liquid. (b) Subsequent peritectic transformation of (a). (c) Further peritectic transformation
More
Image
Published: 27 April 2016
Fig. 24 Three-phase equilibria in a ternary system with a peritectic reaction. Adapted from Ref 3
More
Image
Published: 27 April 2016
Image
Published: 27 April 2016
Fig. 6 Mechanisms of peritectic reaction and transformation. (a) Lateral growth of a β layer along the α-liquid interface during peritectic reaction by liquid diffusion. (b) Thickening of a β layer by solid-state diffusion during peritectic transformation. The solid arrows indicate growth
More
Image
Published: 27 April 2016
Fig. 9 Start of the peritectic reaction in a directionally-solidified Cu-20Sn alloy. Primary α dendrites (white) are covered by peritectically formed β layer (gray) shortly after the temperature reaches T p . Matrix (dark) is a mixture of tin-rich phases. Original magnification: 40×. Source
More
Image
Published: 27 April 2016
Fig. 18 Nickel distribution after peritectic reaction in a steel containing 4 wt% Ni. The temperature gradient was 60 K/cm. Calculations were made at different solidification rates. The dotted line ws the nickel distribution at the start of the peritectic reaction. δ, primary ferrite; γ
More
Image
Published: 27 April 2016
Fig. 20 Three stages of a peritectic reaction in a unidirectionally solidified high-speed steel. (a) First-stage structure. Dark gray is austenite; white is ferrite. The mottled structure is quenched liquid. (b) Subsequent peritectic transformation of (a). (c) Further peritectic transformation
More
Image
Published: 01 December 2008
1